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Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic, 4 Institut national de la recherche agronomique, UMR Centre de

Biologie pour la Gestion des Populations, Montferrier sur Lez, France

Abstract

Populations on islands often exhibit lower levels of genetic variation and ecomorphological divergence compared to their
mainland relatives. While phenotypic differentiation in characters, such as size or shape among insular organisms, has been
well studied, insular differentiation in quantitative reproductive traits involved in chemical communication has received very
little attention to date. Here, we investigated the impact of insularity on two syntopic bumblebee species pairs: one
including species that are phylogenetically related (Bombus terrestris and B. lucorum), and the other including species that
interact ecologically (B. terrestris and its specific nest inquiline B. vestalis). For each bumblebee species, we characterized the
patterns of variation and differentiation of insular (Corsican) vs. mainland (European) populations (i) with four genes
(nuclear and mitochondrial, 3781 bp) and (ii) in the chemical composition of male marking secretions (MMS), a key trait for
mate attraction in bumblebees, by gas chromatography-mass spectrometry (GC-MS). Our results provide evidence for
genetic differentiation in Corsican bumblebees and show that, contrary to theoretical expectations, island populations of
bumblebees exhibit levels of genetic variation similar to the mainland populations. Likewise, our comparative chemical
analyses of MMS indicate that Corsican populations of bumblebees are significantly differentiated from the mainland yet
they hold comparative levels of within-population MMS variability compared to the mainland. Therefore, insularity has led
Corsican populations to diverge both genetically and chemically from their mainland relatives, presumably through genetic
drift, but without a decrease of genetic diversity in island populations. We hypothesize that MMS divergence in Corsican
bumblebees was driven by a persistent lack of gene flow with mainland populations and reinforced by the preference of
Corsican females for sympatric (Corsican) MMS. The impoverished Corsican bumblebee fauna has not led to relaxation of
stabilizing selection on MMS but to consistent differentiation chemical reproductive traits on the island.
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Introduction

Islands have always been of particular interest for evolutionary

biologists and ecologists alike. Indeed, insularity offers unique

opportunities to investigate a range of micro-evolutionary

processes that precede macro-evolutionary events [1]. Insularity

has often led to the same consequences in phylogenetically

disparate groups of organisms, the so-called ‘‘island syndrome’’. At

species community level, islands are often characterized by

depauperate fauna compared to the mainland [2–4], a phenom-

enon that might affect rates of inter-specific interactions, e.g. with

closely-related taxa, or with natural enemies [5]. At the species

level, island populations are often characterized by a series of

genetic and phenotypic changes. Theory predicts that reduced

immigration rates from mainland, founder events and genetic drift

[2,6] generally result in island populations being genetically

impoverished compared to their mainland counterparts [7–9].

Furthermore, populations confined to geographically-isolated and

contrasting habitats on islands often experience ecomorphological

divergence from their mainland relatives. This divergence could

result from genetic changes (founder effects or drift) and/or from

post-colonization adaptive changes produced by different selection

regimes compared to the adjacent mainland habitats [1,2,10–15].

The trend in insular populations to depart from mainland

phenotypes is known to affect a wide range of characters

(morphology, physiology, behavior) as well as life-history traits

[3,10,16–22]. Consequently to phenotypic changes, a vast range of

species that have evolved distinct island forms have sometimes

been ascribed to their own taxonomic status (races, subspecies or
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sometimes even species) (e.g. [23–25]). Whether these phenotypic

differences are genetically-based or reflect phenotypic plasticity

(e.g. [26,27]) has not been deeply investigated.

Phenotypic differentiation of insular populations in characters

such as size (dwarfism vs. gigantism) or shape has been the focus of

abundant research thus far (see [4,15] and references therein). In

contrast, insular differentiation in reproductive and quantitative

traits such as sex pheromones has received comparatively far less

attention (but see [28,29]), despite their key role in the

maintenance of reproductive isolation (e.g. [30–35]). Like most

reproductive traits, courtship pheromones are shaped (i) by

intraspecific interactions to maximize encounter rates among

conspecific mates (sexual selection [36,37]), and (ii) by interspecific

interactions to maintain isolation barriers and decrease the

likelihood of hybridization events among syntopic sister species

[31,37–39], and to minimize eavesdropping by potential predators

or parasites [40,41].

In this paper, we investigated the genetic and phenotypic

consequences of insularity in Corsican bumblebees (Bombus,

Hymenoptera, Apidae). We used a phylogenetic and phylogeo-

graphic approach based on sequence analyses of four genes

(nuclear and mitochondrial) along with comparative chemical

analyses of the differentiation patterns and natural variation of

male marking secretions (MMS). The MMS are an important

reproductive trait in male bumblebees that determines the

attraction of conspecific virgin females. We focused on two

syntopic species pairs, one including two sister species (Bombus

(Bombus) terrestris (L.) and B. (Bombus) lucorum (L.)) and the other

with two ecologically interacting species (B. terrestris and its specific

nest inquiline B. (Psithyrus) vestalis (FOURCROY)). Specifically, we

asked the following questions: (i) are Corsican bumblebees

genetically and chemically differentiated from their conspecific

European mainland populations? (ii) do Corsican bumblebees

exhibit particular changes in the overall genetic diversity and male

marking secretions variability compared to their conspecific

European mainland populations (i.e., the relaxed selection

hypothesis)?

Materials and Methods

Studied insular system and species
Corsica (8680 km2) is a continental, mountainous Mediterra-

nean island located 160 km from the French coast, 12 km from

Sardinia, 82 km from the Italy, and nearly 50 km from the Island

of Elba, which is located 10 km off the coast of Italy. The island is

a well-known biodiversity hotspot [42–45] that hosts a high

diversity of endemic species [43,45,46] and also represents a major

glacial refuge in Europe (e.g. [47]).

Corsican endemics differ in their biogeographic origin and in

the way they colonized Corsica. Colonization by bumblebees may

have occurred during the last Ice Age (Würm, 115 000–10 000

years) from Italy via the present Tuscan Archipelago [48,49]. Six

endemic taxa are recorded from Corsica [48]. Bombus lucorum is a

species widely distributed in the Palaearctic [50] while B. terrestris

and B. vestalis are restricted to the West-Palaearctic region [51,52].

The nearest Corsican taxa of these species are: (i) B. lucorum renardi

Radoszkowski 1884, (ii) B. terrestris xanthopus Kriechbaumer 1870,

and (iii) B. perezi (Schulthess-Rechberg 1886), respectively. The

taxonomic status of the Corsican populations is still not clearly

defined [48,51,53–56]. Therefore, comparisons have been made

between the Corsican taxa and their continental populations (for

B. terrestris and B. lucorum) or their most closely-related mainland

species (for B. vestalis and B. perezi) (Table 1). Corsican populations

of these species are morphologically distinct [48] with specific

color patterns, black hairs and a red-brownish tail (Fig. 1).

Previous studies on B. terrestris have shown that Corsican

populations are genetically differentiated from those on the

mainland [57] and exhibit a distinct diapause duration [58].

Likewise, Corsican populations of B. perezi are unique in being

adapted to the winter phenology of their host, B. terrestris [48,59],

contrary to continental populations of B. vestalis.

Courtship signals of male bumblebees include both behavioral

and chemical features (see [60] for a review). Most bumblebee

males patrol along paths where they scent-mark objects with

species-specific secretions (male marking secretion, MMS) that

attract conspecific virgin females [61,62]. The height and

localization of marked objects differ among species [63]. Female

bumblebees also produce sex pheromones, which elicit male

mating behavior and which are involved in species recognition

[64]. The MMS, the path configuration and possibly also female

sex pheromones are involved in pre-mating recognition. Here, we

focus on the most studied trait, the MMS, which consists of a

complex mixture of (mainly aliphatic) compounds, with several

major components (e.g. ethyl tetradecenoate in B. lucorum [65]) and

with intraspecific variation (e.g. [56,66,67]). MMS are synthesized

de novo by cephalic labial glands [68,69] and the chemical

composition is not affected by environmental conditions, diet or

imprinting [68].

Sampling
We sampled 57 males of B. terrestris (L.), 42 males of B. lucorum

(L.), and 48 males of B. (Psithyrus) vestalis-perezi (FOURCROY) in

Corsica, as well as in localities spread across European mainland

and Sardinia (Fig. 2, Table S1). Males were killed by exposing

them to freezing conditions, at 220uC. The MMS were extracted

in 200 ml n-hexane from dissected cephalic labial glands or entire

cut heads following De Meulemeester et al. [70]. Vials containing

the solvent and sample were kept for 24 h at room temperature

(20uC) to fulfill the extraction [70]. Beheaded bodies were

preserved in 99% ethanol for DNA extraction. All samples were

stored at 240uC prior to the analyses. Studied samples did not

involve endangered or protected species. Permissions for collection

of Corsican samples from were obtained via the Office de

l’Environnement de la Corse and the Direction Régionale de l’Environnement

de Corse. Collecting samples from lands of the Office National des

Forêts, required permission, and this was obtained from the Office

National des Forêts Méditerranée. No specific permits were required for

the other described field studies as collection did not occur in

privately-owned or protected locations.

Molecular analyses
Gene selection, DNA preparation, amplification and

sequencing. We sequenced four genes commonly used to study

interspecific and intraspecific relationships among bumblebees

(e.g. [57,71–73]): mitochondrial cytochrome oxidase 1 (COI),

cytochrome b (Cytb), nuclear protein-coding gene elongation

factor-1 alpha, F2 copy (EF-1a) and phosphoenolpyruvate

carboxykinase (PEPCK). The usefulness of nuclear gene sequences

in discriminating population-level divergence appears limited

(even intron regions) by the substantially greater coalescence time

(and associated variance) compared to mitochondrial genes.

However, according to the short life cycle (one or two generations

every year) of bumblebees, we tested putatively variable nuclear

genes.

Total DNA extraction was performed using a QIAGEN

DNeasyH Tissue Kit (Quiagen Inc., Valencia, CA). Legs were

removed from the specimen, crushed using liquid nitrogen, and

digested for four hours in proteinase K at 56uC. Voucher

Patterns of Differentiation in Insular Bumblebees
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specimens and PCR products used in molecular investigation were

deposited at the University of Mons (Belgium).

Polymerase chain reaction (PCR) amplifications were carried

out for all genes and all samples using primer pair Jerry/Pat [74]

for COI, CB1/CB2 [75] for Cytb, F2-ForH/F2-RevH2 [76] for

EF-1a, and FHv4/RHv4 [72]for PEPCK. PCR amplifications

were carried out by initial denaturing for three minutes at 94uC,

35 (COI, EF-1a) or 40 (Cytb and PEPCK) cycles of one minute

denaturing at 94uC, one minute annealing at 51uC (COI), 50uC
(Cytb), 54uC (EF-1a) or 48.5uC (PEPCK), two minutes elongation

at 72uC and a final extension for ten minutes at 72uC). Genes were

sequenced with an ABI 3730XL sequencer (Applied Biosystems,

Foster City, CA, USA) or by GENOSCOPE (Centre National de

Séquençage; Evry, France). Both strands of each PCR product were

sequenced.

Consensus sequences were computed with CodonCode Aligner

3.0.1. As bumblebee males are haploid [77], there is no

uncertainty in the consensus sequences. The bumblebee origin

of each sequence was checked with BLAST 2.2.20 [78]. The

alignment was performed by MAFFT ver.6. (using FFT-NS-2

algorithms, default parameters) [79]. The data matrix was

computed on Mesquite 2.74 (build 486) [80]. Translation to

proteins (using the Drosophila mitochondrial DNA genetic code or

Universal genetic code) was performed with Mesquite. Sequences

are available on Genbank, accessions JQ820504 to JQ821313

(Table S1).

The final molecular dataset spanned 3781 aligned nucleotides:

849 bp from COI (218 parsimony informative sites (PIS)), 459 bp

from Cytb (112 PIS), 773 bp from EF-1a F2 copy containing a

,200 bp intron (92 PIS), and 859 bp from PEPCK (117 PIS).

Haplotype numbers are 1) B. lucorum: three for COI, two for Cytb,

one for EF-1a, and four for PEPCK; 2) B. terrestris: 14 for COI,

seven for Cytb, one for EF-1a, and seven for PEPCK; 3) B. vestalis:

six for COI, four for Cytb, three for EF-1a, and three for PEPCK.

Phylogenetic and population structure analyses. We

performed phylogenetic and phylogeographic analyses to investi-

Table 1. Corsican taxa and their continental populations (for B. terrestris and B. lucorum) or their most closely-related mainland
species (for B. vestalis and B. perezi).

Corsican taxa Continental Counterparts

B. lucorum renardi Radoszkowski 1884 B. lucorum lucorum (L.)

B. terrestris xanthopus Kriechbaumer 1870 B. terrestris dalmatinus Dalla Torre 1882 (Eastern Europe)

B. terrestris lusitanicus Krüger 1956 (Iberian Peninsula)

B. terrestris terrestris (L.) (Western Europe)

B. perezi (Schulthess-Rechberg 1886) B. vestalis (Fourcroy 1785)

doi:10.1371/journal.pone.0065642.t001

Figure 1. Morphological differentiation between mainland and Corsican taxa of the three bumblebee species investigated. The
female color patterns are represented. Bombus lucorum and B. terrestris are sister species in the subgenus Bombus and B. vestalis is a specific nest
inquiline of B. terrestris.
doi:10.1371/journal.pone.0065642.g001
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gate the extent of genetic differentiation/isolation of Corsican

populations of each bumblebee species. In phylogenetic analyses,

we analyzed each gene independently and combined (all

mitochondrial genes and all nuclear genes) using maximum

parsimony (MP), maximum likelihood (ML) and Bayesian methods

(MB). A test of saturation was applied to each fragment in PAUP*

4.0b 10 [81]. The Incongruence Length Difference (ILD) test [82],

as implemented by PAUP*, was used to evaluate incongruence

between genes. Trees were rooted with basal subgenus of the

bumblebee clade: Mendacibombus (Bombus mendax Gerstaecker 1869

and Bombus shaposnikovi (Skorikov 1910)) [72,83,84]. Other closely

related taxa were included in our analyses: Bombus (Bombus) affinis

Cresson 1863, Bombus (Psithyrus) bohemicus Seidl 1937, Bombus

(Bombus) hypocrita Pérez 1905, Bombus (Bombus) ignitus Smith 1869,

and Bombus (Bombus) sporadicus Nylander 1848.

Heuristic searches were performed in MP using 1000 random

additions and tree bisection reconnection branch swapping,

keeping the best trees only. Gaps were regarded as a fifth state.

Majority rule 50% consensus (MJ50) trees were constructed from

analyses of individual genes and from all genes combined using

parsimony criteria in PAUP* 4.0b 10 for equally-weighted MP

analyses. Clade support values [85] were estimated using

nonparametric bootstrapping in PAUP* (10000 replicates, 1000

random additions, 500 trees saved per replicate).

ML analyses were conducted in GARLI 2.0 [86]. Each gene

was partitioned to explore the best substitution model: 1) EF-1a
into two exons and one intron; 2) PEPCK into two exons and two

introns; 3) COI, Cytb, each EF-1a exon, and PEPCK exons by

base position (1st, 2nd and 3rd). The best fitting substitution models

were chosen with jModeltest [87] using the Akaike information

criteria corrected for small sample sizes (AICc) [88] for each

dataset. The chosen models were: 1) For COI: TIM2+I (1st) and

TPM2uf+I+G (2nd and 3rd); 2) For CytB: TPM1uf+G (1st),

TrN+I+G (2nd) and HKY+G (3rd); 3) For EF-1a exon 1: F81 (1st

and 2nd) and TIM2+G (3rd); 4) For EF-1a intron: TIM1+G; 5) For

EF-1a exon 2: TrN (1st), JC (2nd) and TPM2uf (3rd); 6) For

PEPCK intron 1: TPM2uf+G; 7) For PEPCK exon 1 HKY (1st),

K80 (2nd) and TPM3uf (3rd); 8) For PEPCK intro 2 TIM3+G; 9)

For PEPCK exon 2: K80 (1st and 2nd) and TIM3+G (3rd). A

random starting tree and the automated stopping criterion (stop

when the ln score remained constant for 20000 consecutive

generations) were used. Ten independent runs in GARLI were

carried out for each gene and for the combined data; the topology

and 2ln L were identical among replicates. The highest likelihood

of one of those runs was retained. Statistical confidence in nodes

was evaluated using 1000 non-parametric bootstrap replicates [85]

using the automated stopping criteria set at 10000 generations.

More bootstrap replicates could not be performed because it

would have required unpractical computing times. Topologies

with bootstrap values $70% were considered well supported [89].

Bayesian analyses (MB) were carried out using MrBayes 3.1.2

[90]. The model selection process was the same as that for ML

analysis. Selected models which are not implemented in MrBayes

were substituted by the closest over-parameterized model [91].

The TIM1, TIM2, TIM3, TPM1uf, TPM2uf, TPM3uf and TrN

substitution models were replaced by the GTR model. The

proportion of invariable sites (I) and gamma distributed rates (G)

defined in jModeltest were conserved in all models. Moreover,

genes were analyzed individually and collectively. Five indepen-

dent analyses were carried out for each gene and for the combined

data (10 million generations, four chains with mixed-models,

default priors, saving trees every 100 generations). The analyses

were stopped after checking convergence between runs using the

average standard deviation of split frequencies and by plotting

likelihood values across generations using Tracer 1.4 [92]. The

first one million generations were discarded as burn-in. The

phylogeny and posterior probabilities were then estimated from

the remaining trees and a majority-rule 50% consensus tree was

constructed. Topologies with posterior probabilities $0.95 were

considered well supported [93].

Haplotype networks were constructed using the median joining

method in Network 4.6.1.0 (available at http://www.fluxus-

engineering.com) for each gene and for each species. The

median-joining method uses a maximum parsimony approach to

search for all the shortest phylogenetic trees for a given data set

[94]. To reconstruct the network, we weighted transversions twice

as high as transitions.

We assessed patterns of genetic structure (a) only in mainland

populations (b) in all sampled populations to evaluate whether or

not the Corsican populations were genetically isolated from the

mainland. We used the Analysis of Molecular Variance (AMOVA)

[95] in Arlequin ver. 3.5 [96] with 100,000 random permutations.

Figure 2. Sample maps of the three bumblebee models. A = B. lucorum; B = B. terrestris; C = B. vestalis. The number near sample sites is the
number of samples collected at each sample sites.
doi:10.1371/journal.pone.0065642.g002
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The estimation of Fst statistics considering one group of

populations was used to assess potential genetic structure on the

mainland and to determine if the addition of Corsican populations

in the mainland group increases the population genetic structure

of the species [97].

Genetic diversity within populations. Genetic diversity

was estimated using nucleotide diversity (p) [98] and haplotype

diversity (h) [99] using DnaSP [100] for each gene and for each

species.

Male marking secretion analyses
Chemical analyses. The composition of MMS was deter-

mined by gas chromatography-mass spectrometry (GC-MS) on a

Finigan GCQ with a DB-5 ms non-polar capillary column (5%

phenyl (methyl) polysiloxane stationary phase; 30 m60.25 mm6
0.25 mm) and an ion trap in electron impact mode ‘‘full scan (300–

600)’’. We used a splitless injection mode (220uC) and helium as

carrier gas (50 cm/s). The temperature program of the column

was set to 70uC for two minutes and then increased at a rate of

10uC by minute to 320uC. The temperature was then held at

320uC for five minutes. Compounds were identified in XcaliburTM

using their mass spectra compared to those at National Institute of

Standards and Technology library (NIST, U.S.A) using NIST MS

Search 2.0. The double bond positions were determined i) from

mass spectra of dimethyl disulphide adducts of unsaturated

components (reaction time: 4 h) and ii) by chemical ionization

with acetonitrile as a reaction gas. The products were analyzed by

GC-MS using the same temperature program as for original

extracts. An ion trap GC-MS instrument (Varian Saturn, 2000)

was used for chemical ionization.

All samples were analyzed using a gas chromatograph

Shimadzu GC-2010 with a SLB-5 ms non-polar capillary column

(5% diphenyl/95% dimethyl siloxane; 30 m60.25 mm60.25 mm)

and a flame ionization detector. The chromatographic conditions

were the same as those abovementioned. The peak areas of

compounds were quantified using GCsolution Postrun (Shimadzu

Corporation) with automatic peak detection and noise measure-

ment. Relative amounts (RA in %) of compounds in each sample

were calculated by dividing the peak areas of compounds by the

total area of compounds in each sample using GCsolution Postrun

(Shimadzu Corporation) with automatic peak detection and noise

measurement. We did not use any correction factor to calculate

the RA of individual compounds. All compounds for which RA

were recorded as less than 0.1% for all specimens were discarded

[101]. The data matrix for each species was elaborated with the

relative proportion of each compound for each individual. Data

matrices have been deposited in Tables S2, S3, S4.

Comparative Statistical Analyses Corsica versus

mainland. All statistical analyses were performed using R

[102] to detect MMS differentiations between insular and

continental populations. Three groups were defined; each group

included one Corsican endemic and its continental counterpart(s).

Data consisting of the relative proportion of all compounds were

transformed (log (x-1)) to reduce the great difference of abundance

between highly and slightly concentrated compounds, and we then

standardized (mean = 0, standard deviation = 1) the data matrix to

reduce the sample concentration effect.

Clustering methods have already proved useful to detect and

test differentiation among Bombus MMS (e.g. [73,103]), so we used

this approach to detect distance among taxa. Three additional

matrices were computed: Euclidean, Pearson Phi Correlation, and

Manhattan. Three clustering methods were used for each

association matrix: single, complete, ward and UPGMA (R-

package ape, [104]). We assessed the uncertainty in hierarchical

cluster analysis using p-values calculated via multiscale bootstrap

resampling with 50,000 bootstrap replications (R-package pvclust,

[105]). When we detected MMS differentiations between Corsican

and continental populations in clustering analyses, we assessed

results by performing multiple response permutation procedure

(MRPP) and a perMANOVA, i.e. a permutation-based version of

the multivariate analysis of variance (MANOVA) (R-package

vegan, [106]). The MRPP is a nonparametric, multivariate

procedure that tests the null hypothesis of no difference between

groups. MRPP has the advantage of not requiring distributional

assumptions (such as multivariate normality and homogeneity of

variances). A perMANOVA analysis was performed using the

Bray-Curtis similarity matrix and 1000 permutations. Like

conventional analyses of variances, the perMANOVA calculates

an F statistic by taking the ratio of among group sums of squares to

within group sums of squares. The perMANOVA is robust to

violations of homogeneity of dispersion when the groups’ sample

sizes are equal. The returned p-value is used to detect significant

differences which reflect changes in abundance and chemical

composition of the MMS.

Chemical variability of MMS in Corsica vs. mainland

populations. To evaluate differences in the compositional

variability of MMS between Corsica and the mainland, we used

a distance-based test for multivariate homogeneity of group

dispersions (MHGH) for a one-way ANOVA design [107]. The

procedure first calculates the Euclidean distances between MMS

composition and respective group centroids (Corsica vs. mainland)

on Pearson Phi Correlation matrices (R- package vegan [106]). To

test if one group is more variable than the other, the magnitudes of

these distances are then compared between groups using ordinary

ANOVA. Moreover, a permutation test was run to generate a

permutation distribution of F under the null hypothesis of no

difference in dispersion between groups (R- package vegan [106]).

Interspecific chemical distance. To examine changes in

intra- and inter-specific MMS variability between mainland and

Corsican populations (i.e. the relaxed selection hypothesis), we

compared the inter-specific chemical distance in Corsica vs. the

mainland in R. We computed the Pearson Phi Correlation

distance matrix for each pair of species (B. lucorum vs B. terrestris, B.

lucorum vs B. vestalis-perezi and B. terrestris vs B. vestalis-perezi) among

Corsican individuals and among mainland individuals. We then

computed the mean distance of each individual to all hetero-

specific individuals on Corsica and on the mainland. Based on

these mean distances, we performed Student’s t-test with the null-

hypothesis of no-difference in chemical interspecific distances

between Corsica and mainland. When the t-test assumptions

(independent observations, residues normality (Shapiro-Wilk test)

and homoscedasticity (Bartlett’s test)) were not met (p-values,0.05

for Shapiro and Bartlett’s tests), equivalent non-parametric tests

(Wilcoxon signed-rank test) were conducted.

Results

Genetic and chemical differentiation of the insular
populations

All phylogenetic analyses (maximum parsimony (MP), maxi-

mum likelihood (ML) and Bayesian methods (MB)) performed on

the same dataset led to similar tree topologies and to identical

relationships between Corsican and continental taxa. Mitochon-

drial (COI, Cytb and COI+Cytb) and nuclear (EF-1a, PEPCK

and EF-1a+PEPCK) datasets produced different topologies.

Mitochondrial datasets showed similar and well resolved topolo-

gies. Phylogenetic analyses based on nuclear datasets recovered all

deep hierarchical levels relationships among subgenera and

Patterns of Differentiation in Insular Bumblebees
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between species but EF-1a failed to discriminate between B.

lucorum and B. terrestris (see supplementary trees available at

TreeBase (study accession number S14022). Identical results were

obtained using Network analyses (Fig. 3).

Analyses of genetic differentiation between populations of

Corsican and mainland bumblebee taxa indicated a mitochondrial

divergence but no nuclear differentiation. With the exception of B.

lucorum, phylogenetic analyses of mtDNA failed to resolve

continental and Corsican populations in two well-supported

monophyletic groups. Mitochondrial haplotypes networks

clearly illustrate that Corsican and continental populations

form discrete groups. These findings are confirmed by strong

mitochondrial genetic structure detected by AMOVA tests

(Fst.0.72, P -value,0.01; Table 2).

We detected 55 chemical compounds in the MMS of B. lucorum,

105 in B. terrestris and 56 in B. vestalis-perezi (Tables S5, S6, S7). The

main compounds (median.10%) of B. lucorum were aliphatic esters

(ethyl tetradecenoate and hexadecyl tetradecenoate). B. vestalis

secreted isoprenoids (geranylcitronellol and geranylcitronellyl

acetate) and aliphatic aldehydes (icosadienal) as main compounds

(median.10%). Corsican B. lucorum and B. perezi have the same

main compound as their continental counterparts but different

compounds present in smaller relative amounts (Tables S2 and

S4). The MMS composition of continental B. lucorum and B. vestalis

is very similar to previous studies [65,108]. The main compounds

of B. terrestris were (i) 2,3-dihydrofarnesol in B. terrestris dalmatinus

and B. terrestris sassaricus, (ii) dihydrofarnesyl dodecanoate in B.

terrestris terrestris and B. terrestris lusitanicus, (iii) tricosane for Corsican

B. terrestris xanthopus. Corsican B. terrestris differed also in small

compounds (Table S3). The MMS composition for mainland and

Sardinian B. terrestris were similar to those reported by Coppée

[56].

The statistical analyses of the MMS (MMS composition see

Tables S2, S3, S4, S5) indicate that Corsican individuals differed

from their conspecific mainland populations in all clusters,

irrespective of the distance matrices and clustering methods

Figure 3. Median-joining network of haplotypes found in 4 model species ranges based on COI (on the left) and Cytb (on the right).
A = B. lucorum; B = B. terrestris; C = B. vestalis. The sizes of the circles are proportional to frequencies of haplotypes. The red points on the lines
represent undetected/extinct intermediate haplotype states. The numbers on the lines represent the number of mutations between two close
haplotypes. The black circles are outgroups (see Table S1).
doi:10.1371/journal.pone.0065642.g003

Patterns of Differentiation in Insular Bumblebees

PLOS ONE | www.plosone.org 6 June 2013 | Volume 8 | Issue 6 | e65642



(Fig. 4; only the UPGMA cluster based on the Phi Correlation

matrix is shown). This chemical differentiation of Corsican taxa

and samples is supported by high values of multiscale bootstrap

resampling (.80%) (Fig. 4). PerMANOVA tests confirmed

differentiation between Corsican and mainland populations

for all species: B. lucorum (MRPP: T = 0.2869, A = 0.2405,

P-value,0.01; perMANOVA: DF = 1, F = 30.95, P-value,0.01),

B. terrestris (MRPP: T = 0.3023, A = 0.51, P-value,0.01; perMA-

NOVA: DF = 1, F = 26.141, P-value,0.01) and B. vestalis-perezi

(MRPP: T = 0.3782, A = 0.1543, P-value,0.01; perMANOVA:

DF = 1, F = 17.705, P-value,0.01).

Genetic diversity and chemical variability in insular
populations

Nucleotide and haplotype diversities (p and h, respectively)

recorded in Corsican and continental samples were globally low

(Tables 3 and 4). The values of these parameters differed between

Corsican and mainland populations (Tables 3 and 4) but the

nucleotide and haplotype diversities were not always lower in

Corsica compared to the mainland. We obtained higher or

identical p and h values in Corsica compared to the mainland for

all genes in B. lucorum, and 2) lower or similar p and h values in

Corsica compared to the mainland for all genes for B. terrestris and

B. vestalis.

The comparison of the MMS variability between Corsican and

continental populations showed that there was a significant

difference for B. terrestris (larger for mainland populations:

AMOVA of multivariate dispersion P -value,0.01, permutation

test of multivariate dispersion P -value,0.01) but not for other

species: B. lucorum (AMOVA P -value = 0.249, permutation test

p-value = 0.253) and B. vestalis (AMOVA P -value = 0.213,

permutation test P -value = 0.213)

Chemical interspecific distances in insular and
continental communities

Interspecific distance between each species pair among

Corsican individuals and among mainland individuals showed a

larger interspecific distance in continental individuals (Distance B.

lucorum – B. terrestris: t = 23.8395, df = 88, P -value,0.01; Distance

B. terrestris – B. vestalis: W = 227, P-value,0.01; Distance B. lucorum

– B. vestalis: W = 0, P -value,0.01).

Discussion

Genetic divergences
Most island populations experience reduced gene flow with the

mainland [2]. The reduced gene flow can lead to genetic

differentiation [3] and changes in genetic diversity [7]. The island

populations diverge over time due to persistent genetic drift and/

or changes in selection pressures compared to the mainland.

Genetic differentiation of insular populations is common in birds

(e.g. [109]), frogs (e.g. [110]), lizards (e.g. [111]), flying mammals

(e.g. [112]), land insects (e.g. [113]), flying insects (e.g. [114]), and

other bumblebee species (e.g. [57,115,116]). Island populations

generally exhibit a lower genetic diversity compared to mainland

populations because of genetic drift, founder effects and inbreed-

ing, especially in small subpopulations [117]. The decrease of

genetic diversity has also been reported in different groups of

organisms [7,118,119]. Frankham [7] showed that a significant

majority of island populations presented less genetic variability

than their mainland counterparts, with an average reduction of

29%. This author noticed that the reduction in genetic variation

was similar in island endemic and in non-endemic island

populations in insects.

Here we show that geographic isolation has driven Corsican

bumblebees to a significant degree of genetic differentiation (see

also [57]). Genetic divergences between Corsican and continental

populations are only observed in mitochondrial genes. The larger

potential flight distance of males (which do not transmit their

mitochondrial genome) compared to females cannot explain this

result because the distance between Corsica and the mainland is

larger than the potential flight distance of both sexes [120,121].

This difference is presumably the consequence of the substantially

greater coalescence time (and associated variance) of nuclear genes

as compared to mitochondrial genes [122].

Contrary to predictions outlined by the island syndrome [119],

there is no general trend of drastic loss of genetic diversity in

Corsica compared to the mainland. High migration rates and

separate migrations from differentiated mainland populations are

generally invoked to explain why some island populations have

similar genetic variation to mainland populations [7]. However,

we hypothesize that the results presented here could be explained

by particular events on the mainland rather than on the island.

Indeed, the unexpected low genetic diversities (low p and low or

intermediate h) on the mainland (comparison with other insects,

e.g [123,124]) despite the extensive sampling across species

distribution could reflect a strong and prolonged bottleneck, or a

recent population expansion from a small number of founder

Table 2. Results of the AMOVA analysis using mainland populations alone and with insular populations.

FST

Species Origin COI EF1A Cytb PEPCK

B. lucorum Continent 0 0 0 ns

Continent+Corsica 0.93825 0 1 ns

B. terrestris Continent 0.63681 0 ns 0.33551

Continent+Corsica 0.83433 0 0.78066 ns

Continent+Sardinia 0.68882 0 0.60738 0.40192

B. vestalis Continent ns ns ns ns

Continent+Corsica 0.81531 0.60479 0,78464 0.47727

Only Fst value of the AMOVA tests with p-values,0.01 are represented (ns = non significant).
doi:10.1371/journal.pone.0065642.t002
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individuals [125]. This is most likely driven by past population

bottlenecks during Quaternary glacial events as observed in several

European species (e.g. [125–127]). The relatively high level of

genetic diversity in Corsica might therefore suggest that the island

has acted as a hotspot of intraspecific biodiversity, e.g. as a refuge

during the glaciations as observed in other islands such as Sicily for

rodents [128] and parasitic nematodes [129] or in Macaronesia for

bryophytes [130]. Further studies of these patterns of low genetic

diversity in the mainland are needed to test this hypothesis.

Chemical divergences
Reproductive traits are generally assumed to be shaped by

stabilizing selection to maximize encounter rates among conspe-

cifics [36,131–135], to maintain reproductive isolation barriers

and to decrease the likelihood of hybridization events among

syntopic sister species [31,37–38]. The lower species diversity

found on islands can theoretically reduce inter-specific mating

opportunities (and therefore decrease the likelihood of hybridiza-

tion events among sister species), which could relax the stabilising

selection on courtship signals. We therefore expected an increase

of MMS variability among the Corsican bumblebees due to the

impoverished bumblebee fauna on the island.

Our results do not support this hypothesis since we did not

observe a relaxation of the stabilizing selection on the MMS within

the island. Geographic variation in courtship traits found here has

been observed in several species such as moths [136–139],

Drosophila flies [140], bees [141,142]) and birds [143]. Previous

studies showed that bumblebee females (ethological tests are only

available for B. terrestris) are able to discriminate the MMS from

various populations and, in the case of Corsican females, to exhibit

significant preferences for the MMS from Corsican subspecies

[56]. Many studies on sexual selection have largely documented

that individuals often recognize and prefer to mate with

individuals from ‘‘local’’ vs ‘‘exotic’’ populations (e.g.

[36,144,145]). Preferences of bumblebee females suggest sexual

selection acting on the MMS and stabilizing the Corsican MMS

type. In contrast, preferences of the receiver for exotic pheromonal

blend have been also observed in bees [141], flies [144] and

crickets [146]. In B. terrestris, females prefer the MMS of exotic

males inside its own subspecies, probably to minimize sibling

mating [56]. We suggest that the current Corsican MMS pattern

(divergence from the mainland and small inter-individuals

variation) is explained by sexual selection (balance between female

preferences for its own subspecies and exotic MMS) and genetic

differentiation. The genetic basis of variation in chemical blends

involved in chemical communication and its heritability has been

demonstrated in moths (review in [147]). Genetic differentiation

can thus result in altered chemical blends [39,132,148–150]. Most

of these altered blends are selected against (stabilizing selection)

through the sexual selection (i.e. altered blends are not recognized

by receivers) [31]. Nevertheless some releasers with an altered

blend can evolutionarily be tracked by receivers because of a

putative wide response window of receivers (e.g. in moths [149]).

Moreover, these releasers with an altered blend can spread in the

population, thanks to some ecological factors (e.g. [151]),

intraspecific factors strongly selected for such a change (e.g.

receiver preference [132]), or stochastic events prevailed over

selection [152]. In Corsican bumblebees, we expect that a

recognized altered blend has spread in the population and

overcome old signals through preference of the females for exotic

blends before a new period of stabilizing selection [132].

Insular species community
Like a physical landscape cluttered with visual stimuli compet-

ing for attention, the ‘‘scentscape’’ is muddled with odors of

different types arising from a wide variety of sources [153]. Thus,

in order to successfully communicate with the recipients (e.g.

minimization of mismating events), the courtship signal of a

species is shaped by selection to be different from others produced

in the same environment [31,38,39]. This selection for species

specific courtship signal corresponds to trap each species to a

narrow range of signals different from other scents of the local

scentscape (theory of adaptive landscape [152]). Changes in taxa

composition of local species community or in chemical signals of

species of this community can thus lead to reorganising of the local

scentscape. The Corsican MMS pattern (divergence from the

mainland and small inter-individuals variation) and changes in

MMS interspecific distances between mainland and the island

suggest that scentscape reorganization happened on the island.

Figure 4. Unweighted pair group method with arithmetic mean (UPGMA) cluster based on a correlation matrix calculated from the
matrix of male marking secretion. A = B. lucorum (55 compounds X 42specimens); B = B. terrestris (105 compounds X 56 specimens); C = B. vestalis
(56 compounds X 48 specimens). Values above branch represent multiscale bootstrap resampling (only values .80% are given).
doi:10.1371/journal.pone.0065642.g004

Table 3. Haplotype diversity observed among individuals of three species groups present on island or on mainland.

h

Species Origin COI EF1A Cytb PEPCK

B. lucorum Continent 0 (0) 0 (0) 0 (0) 0.159 (0.094)

Corsica 0.366 (0.1264) 0 (0) 0 (0) 0.778 (0.045)

B. terrestris Continent 0.816 (0.045) 0 (0) 0.439 (0.097) 0.637 (0.080)

Corsica 0.620 (0.061) 0 (0) 0.491 (0.068) 0.608 (0.089)

Sardinia 0.250 (0.180) 0 (0) 0.429 (0.169) 0 (0)

B. vestalis Continent 0.591 (0.072) 0.340 (0.090) 0.616 (0.064) 0.502 (0.040)

Corsica 0.292 (0.127) 0.343 (0.128) 0 (0) 0.515 (0.052)

h is the haplotype diversity and the values in brackets are the standard deviations.
doi:10.1371/journal.pone.0065642.t003
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Insular inquiline species
Bombus terrestris and B. vestalis-perezi, the host-inquiline pair, are

both genetically and ecologically differentiated from the mainland.

These differentiations could be generated by a process of

reciprocal adaptations in response to selective pressures imposed

by the interacting species on each other (coevolution) [154].

Morphological and chemical adaptations to parasitism suggest a

coevolution (evolutionary arms race) between B. terrestris and B.

vestalis [155–157]. However, the similar pattern of differentiation

in Corsican B. lucorum suggests that similar ecological constraints or

stochastic events, rather than coevolution, might be responsible for

observed patterns of co-differentiation [158,159].

Insular speciation process
The geographic differentiation of courtship traits can directly

interfere in the intraspecific communication between distant

populations (e.g. in moths [160] or in bumblebees [161]); the

consequence can range from simple regional variation (like dialects

in songbirds [162] or in moths [163] or in solitary bees [141]

consisting of different relative amounts of the same key

compounds) to the establishment of a reproductive (pre-zygotic)

isolation barriers between populations [164].

Results on MMS of Corsican B. lucorum and B. perezi could

suggest only a Corsican dialect because of insular and continental

populations share the same main compounds. Further bioassays

on these two taxa are needed to test this hypothesis. Among B.

terrestris, MMS differentiation of Corsican population involves

main compounds and could suggests more drastic consequences

on pre-mating recognition. Behavioral bioassays support this

hypothesis: B. terrestris females exhibit significant preferences for

MMS from its own subspecies [56] even if all subspecies are able

to interbreed in experimental conditions [58,161,165,166].

Coppée [56] suggested an incipient allopatric speciation process

for Corsican B. terrestris according to MMS divergence and

behavioral bioassays. However, pre-mating animal communica-

tion is highly complex and often involves multiple mating cues and

signal modalities [167–172]. Detecting speciation process driven

by differentiation in reproductive traits needs a global view of the

species mating recognition system [31], which is difficult to

comprehend. Moreover, establishing reproductive isolation in

natural conditions by divergence in reproductive traits between

insulars and continentals means that a degree of subjectivity is

necessary in deciding whether allopatric populations have

diverged enough to prevent interbreeding [173]. Therefore,

further integrative taxonomy, including on morphologic and

genetic criterions [73,174] based on an adapted species concept

for the comparison of allopatric taxa (e.g. [175]), are needed in

order to assess if the Corsican MMS differentiations involve pre-

mating reproductive isolations.

Conclusions

Compared to mainland populations, isolation of Corsican

populations has led to genetic and MMS divergences. The

Corsican taxa have presumably diverged by allopatric differenti-

ation without genetic and demographic processes intrinsic to

island populations, such as loss of genetic diversity. We hypoth-

esize that MMS divergence in Corsican bumblebees most likely

results from genetic differentiation, reinforced by insular specific

sexual selection. The impoverishment of Corsican bumblebee

fauna has not led to relaxing the stabilising selection on MMS.

However, MMS differentiation and changes in bumblebee

community in Corsica seem to have led to the reorganization of

signal system on the island.

Supporting Information

Table S1 Table of sampling. Group = Group model species;

Code = Sample labels used in figures; Population = names of

populations used in SMP and genetic analyses; Land: BE = Bel-

gium, CZ = Czech Republic, DE = Germany, DK = Denmark,

FR = France, GR = Greece, HU = Hungary, IT = Italy,

NL = Netherlands, PL = Poland, RO = Rumania, SE = Sweden,

SK = Slovakia, SL = Slovenia; Recorder : AC = Audrey Coppée,

AR = Arnaud Roelandts, DM = Denis Michez, MC = Maurizio

Cornalba, MT = Michael Terzo, PL = Patrick Lhomme,

PR = Pierre Rasmont, SD = Simon Dellicour, SL = Sophie Lam-

bert, TD = Thibaut De Meulemeester, TL = Thomas Lecocq;

Cytb, COI, EF-1a, and PEPCK are the Genbank accession

numbers for each samples.

(XLS)

Table S2 MMS data matrix (relative amounts of each

compound) of B. lucorum.

(XLS)

Table S3 MMS data matrix (relative amounts of each

compound) of B. terrestris.

(XLS)

Table S4 MMS data matrix (relative amounts of each

compound) of B. vestalis.

(XLS)

Table 4. Nucleotide diversity observed among individuals of three species groups present on island or on mainland.

p

Species Origin COI EF1A Cytb PEPCK

B. lucorum Continent 0 0 0 0.00037 (0.00022)

Corsica 0.00043 (0.00015) 0 (0) 0 (0) 0.00145 (0.00017)

B. terrestris Continent 0.01286 (0.00154) 0 (0) 0.00103 (0.00026) 0.00112 (0.00023)

Corsica 0.00085 (0.00014) 0 (0) 0.00107 (0.00015) 0.00165 (0.00038)

Sardinia 0.00029 (0.00021) 0 (0) 0.00093 (0.00037) 0 (0)

B. vestalis Continent 0.00120 (0.00021) 0.00044 (0.00012) 0.00157 (0.00023) 0.00058 (0.00005)

Corsica 0.00045 (0.00022) 0.00045 (0.00014) 0 (0) 0.00059 (0.00006)

p is the nucleotide diversity and the values in brackets are the standard deviations.
doi:10.1371/journal.pone.0065642.t004
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Table S5 List of the identified compounds in Corsican and

continental B. lucorum. Molecular weight (MW (m/z)), median

(Med (%)), first and fourth quartiles (Q1 (%) and Q2 (%)),

minimum and maximum (Min (%) and Max (%)) of the 55

identified compounds. Unknown Lucorum x are undetermined

compounds.

(XLS)

Table S6 List of the identified compounds in Corsican,

Sardinian and continental B. terrestris Molecular weight (MW

(m/z)). Median (Med (%)). First and fourth quartiles (Q1 (%) and

Q2 (%)). Minimum and maximum (Min (%) and Max (%)) of the

105 identified compounds. Unknown Terrestris x are undeter-

mined compounds.

(XLS)

Table S7 List of the identified compounds in B. perezi and B.

vestalis. Molecular weight (MW (m/z)). Median (Med (%)). First

and fourth quartiles (Q1 (%) and Q2 (%)). Minimum and

maximum (Min (%) and Max (%)) of the 56 identified compounds.

Unknown Vestalis x are undetermined compounds.

(XLS)
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42. Médail F, Quézel P (1997) Hot-spot analysis for conservation in the
Mediterranean Basin. Ann Mo Bot Gard 84:112–127.

43. Thompson JD (2005) Plant evolution in the Mediterranean. Oxford University

Press, New York, NY. 308p.

44. Jeanmonod D, Gamisans J (2007) Flora Corsica. Edisud, Aix-en-Provence.
920p.

45. Blondel J, Aronson J, Bodiou JY, Boeuf G (2010) The Mediterranean region:

biological diversity in space and time. Oxford University Press, New York, NY.

392p.

Patterns of Differentiation in Insular Bumblebees

PLOS ONE | www.plosone.org 11 June 2013 | Volume 8 | Issue 6 | e65642



46. Grill A, Casula P, Lecis R, Menken S (2007) Endemism in Sardinia in

phylogeography of Southern European refugia. Pp. 273–296. Phylogeography

in Southern European refugia: evolutionary perspectives on the origins and

conservation of European Biodiversity. Springer Verlag, Dordrecht.

47. Médail F, Diadema K (2009) Glacial refugia influence plant diversity patterns

in the Mediterranean Basin. J Biogeogr 36:1333–1345.

48. Rasmont P, Adamski A (1996) Les Bourdons de la Corse (Hymenoptera,

Apoidea, Bombinae). N Faun Gembloux 31:1–87.

49. Bossio A, Cornamusini G, Ferrandini J, Ferrandini M, Foresi LM, et al. (2000)

Dinamica dal Neogene al Quaternario della Corsica orientale e della Toscana.

Pp. 87–95. Progetto interreg II Toscana–Corsica 1997–1999. Strumia, F. (Ed.).

Pisa: Edizioni ETS, Pisa.

50. Williams PH (1998) An annotated checklist of bumble bees with an analysis of

patterns of description (Hymenoptera: Apidae, Bombini). Bull br Mus nat Hist

Entomol 67:79–152.

51. Popov VB (1931) Zur Kenntnis der paläarktischen Schmarotzerhummeln
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