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A molecular phylogeny of the Old World stingless bees
(Hymenoptera: Apidae: Meliponini) and the
non-monophyly of the large genus Trigona

CLAU S RA SMUS S EN and S YDNEY A . CAMERON
Department of Entomology, University of Illinois, Urbana, Illinois, U.S.A.

Abstract. We examined the inter- and infrageneric relationships of Old World
Meliponini with a near-complete sampling of supra-specific taxa. DNA sequences
for the taxa were collected from four genes (mitochondrial 16S rRNA, nuclear
long-wavelength rhodopsin copy 1 (opsin), elongation factor-1a copy F2 and
arginine kinase). Additional sampling of New World taxa indicated that Trigona
sensu lato is not monophyletic: Trigona from the Indo-Malayan/Australasian
Regions forms a large clade distantly related to the Neotropical Trigona. A
separate clade comprises the Afrotropical meliponines, and includes the ‘minute’
species found in the Afrotropical, Indo-Malayan and Australasian Regions. The
Neotropical genus Melipona, by contrast with previous investigations, is not the
sister lineage to the remaining stingless bees, but falls within the strongly supported
Neotropical clade. These results constitute the framework for a revised classifica-
tion and ongoing biological investigations of Meliponini. A single taxonomic
change, Heterotrigona bakeri stat.n., is proposed on the basis of sequence
divergence.

Introduction

Stingless bees (Meliponini) are by far the most diverse,

morphologically and behaviourally, of the eusocial corbi-
culate bees (Apini, Bombini, Meliponini) (Michener, 2000).
They have also enjoyed a long history of discovery and
description by naturalists and scholars during explorations

of the tropical regions of the world (e.g. Bennet, 1831; Bates,
1863; Schwarz, 1948; Ruiz, 1998). Facets of their diversity
are evident in their social organization, systems of commu-

nication, nest architecture and reproductive behaviour.
Their perennial colonies range in size from fewer than 100
to tens of thousands of workers (Roubik, 1989; Drumond

et al., 1997;Michener, 2000) and usually contain a single queen
(Velthuis et al., 2001). Meliponines utilize diverse and elab-
orate communication systems with well-developed recruit-
ment mechanisms that include scent-marking (Lindauer &

Kerr, 1958, 1960; Hubbell & Johnson, 1978; Nieh, 1998,

1999; Nieh & Roubik, 1998; Nieh et al., 2003a,b) and
acoustical communication (Lindauer & Kerr, 1958; Esch
et al., 1965; Nieh & Roubik, 1998; Nieh et al., 2003b; Nieh,

2004). Species vary considerably in their nest architecture,
which ranges in design from brood cells arranged in hori-
zontal combs or clusters, constructed within crevices in trees
or in the ground (Wille & Michener, 1973; Roubik, 2006),

and occasionally within the active colonies of other social
insects (e.g. Schwarz, 1948; Rasmussen, 2004). The sub-
stantial elaboration of their nest entrance is generally species

specific (Sakagami et al., 1990; Camargo & Pedro, 2003a;
Franck et al., 2004). Furthermore, comparative studies
of their oviposition rituals have identified high levels of

diversity in reproductive behaviour (Sakagami & Zucchi,
1963; Sakagami, 1982; Zucchi et al., 1999; Drumond et al.,
2000).
An important element in the diversity of stingless bees

may be their relatively great age, as suggested in the fossil
record and their worldwide distribution. The oldest known
bee fossil to date is a meliponine (Cretotrigona prisca) from

New Jersey amber that apparently dates to the Late
Cretaceous (Michener & Grimaldi, 1988a, b; Grimaldi,
1999; Engel, 2000), although controversy surrounds the
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estimate (Rasnitsyn &Michener, 1990; Rasnitsyn & Quicke,
2002). Meliponines are distributed throughout the tropical

and subtropical parts of the Afrotropical, Australasian,
Indo-Malayan and Neotropical Regions, exhibiting greatest
abundance in New World Amazonian rain forest

(Michener, 1979; Roubik, 1992; Camargo, 1994; Michener,
2000). Their age and distribution pattern suggest a Gond-
wanan vicariance origin for the group (Michener, 1979;
Camargo & Wittmann, 1989), but dispersal models involv-

ing Laurasian/Australasian interchange have been proposed
(Kerr & Maule, 1964; Wille, 1979). To date, no biogeo-
graphical hypothesis has been tested with phylogenetic

evidence.
Evolutionary insight into the unusually diverse social

behaviour and biogeographical history of the stingless bees

requires a strongly supported phylogenetic framework,
which until now has been lacking. In this paper, we provide
the foundation for this framework. In the following, we
describe the history of meliponine classificatory and phylo-

genetic research, with emphasis on the largest and most
widespread of the genera, Trigona sensu lato (s.l.).

Classification and current phylogenetic status of Meliponini

Reduced wing venation, the presence of a penicillum (a
brush of long stiff setae on the anterior apical outer margin
of the hind tibia) and the reduction of the sting apparatus in

females support the monophyly of Meliponini. The presence
of a hind tibial corbicula (pollen basket) is shared with other
corbiculate bees, including Euglossini (Michener, 1990). The
relationship of meliponines to the other corbiculate tribes

has been controversial, as the available morphological
evidence argues for Apini as the sister group (Roig-Alsina
& Michener, 1993; Schultz et al., 2001), whereas accumu-

lating molecular evidence points to Bombini as most closely
related (Cameron & Mardulyn, 2001, 2003; Lockhart &
Cameron, 2001; Cameron, 2003; Thompson & Oldroyd,

2004). There may have been considerable extinction of
corbiculate lineages (Engel, 2001), possibly further obscur-
ing the morphological and behavioural transitions between

the extant tribes.
The morphological diversity of meliponines has led some

authors to recognize many supra-specific groups at the
generic level (Table 1; e.g. Moure, 1961, 1971; Silveira et al.,

2002; Camargo & Pedro, 2003b). Others have proposed
a simpler classification to avoid a profusion of formal names
(Table 1; e.g. Wille &Michener, 1973; Michener, 2000). For

instance, Wille (1983) concluded that numerous names
would be meaningful only for a minority of entomologists,
whereas Sakagami (1982) found it convenient to use the

multiplicity of names in his review of meliponine biology.
He suggested that most, if not all, of the supra-specific
groups are natural and exhibit clear behavioural differences.
Here, we use Moure’s (1971) proposed generic system to

fully represent the known taxonomic diversity, and to allow
us to test the monophyly and relationships between various
groupings.

In the largest meliponine genus, Trigona s.l. (Table 1),
workers share a morphological synapomorphy in which the

keirotrichia (a dense field of minute, blunt setae) is restricted
to a median longitudinal band on the inner hind tibia, and,
in cross-section, the hind tibia forms a broad, raised median

ridge (Michener, 1990). This has been utilized for placing
more than 120 species into ten subgenera (Michener, 2000)
from the Indo-Malayan/Australasian and Neotropical Re-
gions. The first cladistic phylogeny of Meliponini by

Michener (1990), based on an analysis of seventeen mor-
phological characters, recoveredMelipona as sister group to
the remaining taxa, whereas Trigona s.l. encompassed

species from both the Neotropical and Indo-Malayan/
Australasian Regions. All Afrotropical taxa, except Hypo-
trigona, formed a single derived clade. Camargo & Pedro

(1992a, 1992b) reassessed Michener’s characters and pro-
posed an alternative classification in which Melipona fell
within a derived Neotropical clade. The Trigona s.l. clade
included Neotropical and Indo-Malayan/Australasian taxa,

as inMichener (1990), but, by contrast, all Afrotropical taxa
appeared as a sister clade to the other meliponines.
Both phylogenies are poorly resolved and lack confidence

estimates of the phylogenetic results. Other morphology-
based phylogenies of Meliponini involve lower level studies
of taxa within and between various Neotropical genera

(Camargo, 1996; Roubik et al., 1997; Camargo & Pedro,
2003a, b, 2004; Pedro & Camargo, 2003; Camargo &
Roubik, 2005). Phenetic analyses have been performed on

a limited number of taxa (Pisani et al., 1969; Cunha, 1973,
1991, 1994). A molecular investigation of thirty-four species
representing twenty-two genera, including three Indo-
Malayan/Australasian and three Afrotropical genera, was

undertaken by Costa et al. (2003), based on a 320–421-bp
fragment of 16S rRNA. On the basis of their limited
character and taxonomic sampling, they found that the

Indo-Malayan/Australasian Trigona were related to Afro-
tropical taxa, whereas Trigona sensu stricto (s.s.) was
a derived Neotropical clade. However, the maximum parsi-

mony (MP) bootstrap values (BVs) for most relationships
between genera were below 50%.
The knowledge of meliponine relationships is obscured by

the scarcity of good morphological synapomorphies to
reveal a consistent phylogenetic pattern (Michener, 1990;
Camargo & Pedro, 1992a); furthermore, there remains
a need to address the relationships of the Old World

Meliponini and to test the monophyly of Trigona s.l. with
a larger dataset.
In this paper, we report the results of a phylogenetic

analysis of the inter- and infrageneric relationships of Old
World meliponines (i.e. Afrotropical, Indo-Malayan and
Australasian; sensu Olson et al., 2001) with a nearly com-

plete sampling of genera (sensu Moure, 1971). We also
examine the overall monophyly of Trigona s.l. with addi-
tional taxon sampling from the Neotropical Region. DNA
sequences for these taxa were collected from four genes

[mitochondrial 16S rRNA, nuclear long-wavelength rho-
dopsin copy 1 (opsin), elongation factor-1a copy F2
(EF-1a) and arginine kinase (ArgK)]. For comparison of
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the results from Bayesian Markov chain Monte Carlo
(BMCMC) analysis, both maximum likelihood (ML) and

MP inference methods were included.

Materials and methods

Taxon sampling

Seventy-nine taxa comprise the ingroup (Table S1, Sup-

plementary material), including all proposed Old World
genera and subgenera (Moure, 1971), except Papuatrigona
(monotypic, New Guinea), Pariotrigona (monotypic,

Thailand, Malaysia, Borneo, Sumatra) and Cleptotrigona
(monotypic, sub-Saharan Africa) (Michener, 1990, 2000,
2001; Sakagami et al., 1990; Eardley, 2004). Neotropical

taxa include fifteen exemplars representing thirteen taxo-
nomically diverse genera, including several Trigona s.s. and
distantly related groups. Six taxa from the other corbiculate

tribes were selected as outgroups. Table S1 (Supplementary
material) provides a list of the species, their collection
localities, voucher and GenBank accession numbers. If
colour polymorphism or disjunct distribution suggested

Table 1. The two classificatory systems of stingless bees (Melipo-

nini). First column according to Michener (2000) and second

column according to Moure (1951, 1961, 1971), including the

authority of each generic name. Our study follows Moure in the

use of names, except for Melipona, where we refer to Eomelipona,

Melikerria, Melipona s.s. and Michmelia as subgenera of Melipona.

Paratrigonoides (Neotropical) was described recently and is not

included (Camargo & Roubik, 2005). Regional distributions of the

taxa are Afrotropical (AT), Neotropical (NE), Indo-Malayan (IM)

and Australasian (AA). Olson et al. (2001) considered Java, Bali,

Borneo and the Philippines as the south-easternmost parts of the

Indo-Malayan region, whereas Sulawesi was assigned to the

Australasian region. Indo-Malayan taxa found in the Australasian

Region only through their presence on Sulawesi (Geniotrigona,

Lepidotrigona) are marked with an asterisk.

Genus sensu

Michener

Genus sensu

Moure Distribution

Austroplebeia Austroplebeia Moure AA

Cephalotrigona Cephalotrigona Schwarz NE

Cleptotrigona Cleptotrigona Moure AT

Dactylurina Dactylurina Cockerell AT

Hypotrigona Hypotrigona Cockerell AT

Lestrimelitta Lestrimelitta Friese NE

Liotrigona Liotrigona Moure AT

Lisotrigona Lisotrigona Moure IM

Melipona Eomelipona Moure NE

Melipona Melikerria Moure NE

Melipona Melipona Illger NE

Melipona Michmelia Moure NE

Meliponula

(Meliplebeia)

Apotrigona Moure AT

M. (Axestotrigona) Axestotrigona Moure AT

M. (Meliplebeia) Meliplebeia Moure AT

M. (Meliponula) Meliponula Cockerell AT

M. (Meliplebeia) Plebeiella Moure AT

Meliwillea Meliwillea Roubik,

Segura & Camargo

NE

Nannotrigona Nannotrigona Cockerell NE

Nogueirapis Nogueirapis Moure NE

Oxytrigona Oxytrigona Cockerell NE

Paratrigona Aparatrigona Moure NE

Paratrigona Paratrigona Schwarz NE

Pariotrigona Pariotrigona Moure IM

Partamona

(Parapartamona)

Parapartamona

Schwarz

NE

P. (Partamona) Partamona Schwarz NE

Plebeia (Plebeia) Friesella Moure NE

Plebeia (Plebeia) Mourella Schwarz NE

Plebeia (Plebeia) Plebeia Schwarz NE

P. (Scaura) Scaura Schwarz NE

P. (Schwarziana) Schwarziana Moure NE

P. (Scaura) Schwarzula Moure NE

Plebeina Plebeina Moure AT

Scaptotrigona Sakagamilla Moure NE

Scaptotrigona Scaptotrigona Moure NE

Trichotrigona Trichotrigona

Camargo & Moure

NE

Trigona sensu lato

Trigona

(Tetragona)

Camargoia Moure NE

Table 1. Continued

Genus sensu

Michener

Genus sensu

Moure Distribution

T. (Duckeola) Duckeola Moure NE

T. (Frieseomelitta) Frieseomelitta Ihering NE

T. (Heterotrigona) Geniotrigona Moure IM*

T. (Geotrigona) Geotrigona Moure NE

T. (Heterotrigona) Heterotrigona Schwarz IM

T. (Homotrigona) Homotrigona Moure IM

T. (Lepidotrigona) Lepidotrigona Schwarz IM*

T. (Heterotrigona) Lophotrigona Moure IM

T. (Heterotrigona) Odontotrigona Moure IM

T. (Papuatrigona) Papuatrigona

Michener &

Sakagami

AA

T. (Heterotrigona) Platytrigona Moure IM/AA

T. (Tetragona) Ptilotrigona Moure NE

T. (Heterotrigona) Sundatrigona

Inoue &

Sakagami

IM

T. (Tetragona) Tetragona

Lepeletier &

Serville

NE

T. (Heterotrigona) Tetragonilla Moure IM

T. (Tetragonisca) Tetragonisca Moure NE

T. (Heterotrigona) Tetragonula Moure IM/AA

T. (Heterotrigona) Tetrigona Moure IM

T. (Trigona) Trigona Jurine NE

Trigonisca Celetrigona Moure NE

Trigonisca Dolichotrigona Moure NE

Trigonisca Leurotrigona Moure NE

Trigonisca Trigonisca Moure NE
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more than one biological species in the available material,
multiple individuals were included to assess the degree of

sequence divergence (i.e. Tetragonula fuscobalteata, T. cly-
pearis, T. geissleri, T. sapiens, Heterotrigona itama, Lepido-
trigona terminata, Geniotrigona thoracica, Axestotrigona

ferruginea and Austroplebeia symei).

Gene selection

We sequenced fragments of four independently evolving
genes found to be informative for the phylogenetic analysis

of bees at several levels of relationship: mitochondrial 16S
for closely related species (Cameron & Williams, 2003;
Cameron et al., 2006; Hines et al., 2006) and, for resolu-

tion at higher levels, nuclear opsin copy 1 (Mardulyn &
Cameron, 1999; Ascher et al., 2001; Cameron & Mardulyn,
2003; Cameron & Williams, 2003; Lin & Danforth, 2004;
Ortiz-Rivas et al., 2004; Spaethe & Briscoe, 2004), ArgK

(Kawakita et al., 2003, 2004; Hines et al., 2006) and EF-1a
copy F2 (Cho et al., 1995; Danforth & Ji, 1998; Danforth
et al., 1999).

DNA extraction, amplification and sequencing

Bees were collected into 95% ethanol in the field and
stored at 4 8C in the laboratory. DNA was extracted from

thoracic muscle of single individuals using the Dneasy�

tissue extraction kit (QIAGEN Inc., Valencia, California),
resuspended into 100–180 ml buffer TE, depending on the
amount of available tissue. A limited number of taxa were

extracted using phenol–chloroform with ethanol precipita-
tion. For small specimens, the entire insect except head and
wings was used. Voucher remains of all sampled taxa are

retained at the Illinois Natural History Survey, Champaign,
Illinois, U.S.A.
Polymerase chain reaction (PCR) amplification andDNA

sequencing were performed with primers reported from the
literature for 16S (Cameron et al., 1992: 874-16S1R; Dowton
& Austin, 1994: 16SWb), opsin (Mardulyn & Cameron,
1999), EF-1a (Hines et al., 2006) and ArgK (Kawakita et al.,

2003: Kawakita 2F/2R). Some meliponine taxa did not
amplify successfully with the reverse opsin primer, but did
so with a degenerate oligo (59-CACTCCGYACTRGTAT-

TYTGAT-39) that terminated upstream of the second intron.
Double-stranded PCR products were amplified with an

EppendorfMastercycler gradient (Eppendorf AG,Hamburg,

Germany) PCR machine using an initial denaturation
step for 2–5 min at 94–95 8C, followed by thirty-five cycles
of denaturation (60 s at 94–95 8C), annealing and elongation

(48 8C/68 8C for 16S, 49 8C/65 8C for opsin, 53–55 8C/72 8C
for EF-1a, 50 8C/65 8C for ArgK). A final extension was run
for 4–5 min at 65–72 8C. PCR products were purified using
the QIAquick� spin kit (QIAGEN) according to the

manufacturer’s protocol. DNA sequencing was carried out
with PCR primers using the BigDye� terminator kit version
3.1 (Applied Biosystems, Foster City, California). Sequence

products were run on an ABI 3730XL automated sequencer
(W. M. Keck Center for Comparative and Functional

Genomics, University of Illinois, Champaign, Illinois,
U.S.A.). Both strands were sequenced for all taxa. Sequen-
ces of ArgK are missing for five taxa and of EF-1a for one

taxon (Table S1, Supplementary material). Sequences are
deposited in GenBank under the accession numbers given in
Table S1 (Supplementary material).

Sequence alignment

DNA sequences were edited and aligned in BIOEDIT

version 7.0.0 (Hall, 1999) with costs of 20 for opening and
0.1 for extension. Computer alignments were adjusted by

hand to optimize positional homology, in particular within
introns and variable regions. Intron, variable and gap
regions were alignable and included in the analyses because
they yield phylogenetically useful characters (Cameron &

Williams, 2003; Kawakita et al., 2003; Hines et al., 2006).
Uncorrected pairwise sequence divergences (p distances)

were calculated in PAUP* version 4.0b10 (Swofford, 2002).

These values were used to estimate divergence between all
sequences and to compare mean divergence between se-
quences for each gene. To test for stationarity, base

composition statistics were evaluated with a chi-squared
(w2) test for homogeneity in PAUP*.

Phylogenetic methods

Bayesian analyses. Bayesian analysis with an MCMC

search strategy was implemented in MRBAYES version
3.1.2 (Ronquist & Huelsenbeck, 2003). Nuclear genes were
partitioned into exons and introns to allow for variable

evolutionary rates between gene regions (Huelsenbeck &
Crandall, 1997). The most appropriate substitution model
was determined for each gene partition on the basis of the

Akaike information criterion (AIC) in MODELTEST version
3.7 (Posada & Crandall, 1998). Each model is listed in
Table 2. Three replicate independent BMCMC analyses
(four chains, mixed models, flat priors, trees sampled every

1000 generations) were run for each gene fragment (two
million generations) and for a combined genes dataset
(eight million generations). Log likelihood plots of trees

from the Markov chain samples were examined in TRACER

version 1.3 (Rambaut & Drummond, 2006) to determine
convergence to a stable log likelihood value. All trees

estimated prior to convergence (burn-in) (Huelsenbeck &
Ronquist, 2001) were discarded. Likelihood traces between
replicate runs were compared for convergence to similar

log likelihood values. If replicate runs converged, all trees
after burn-in were combined to create a single consensus
tree. BMCMC posterior probability (PP) values represent
the proportion of MCMC samples that contain a particular

node.
ML non-parametric bootstrapping (Felsenstein, 1985),

applying the GTR þ I þ G model, was performed for
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comparison of BVs with PPs. ML BVs were estimated in

PHYML version 2.4.4 (Guindon & Gascuel, 2003) (200
replicates, GTR model, p-invar ¼ 0.49, gamma distribution
¼ 0.50) based on an ML starting tree obtained in PAUP* [100
replicates, tree bisection–reconnection (TBR) branch

swapping, retaining 500 trees per replicate]. When all
partitions were combined, MODELTEST suggested the GTR
þ I þ G model (log likelihood, – 19 655.6) second to the

TVM þ I þ G model (log likelihood, – 19 656.3). Only the
GTR model was supported by PHYML and therefore used in
the analysis.

Parsimony analyses. Both MP (heuristic search, 1000
random additions, TBR branch swapping, all characters
of equal weight) and bootstrap (heuristic search, 500
replicates, ten random additions per replicate, retaining

200 trees per replicate) analyses were performed in PAUP*.
Bremer support values (Bremer, 1994) were calculated in
TREEROT version 2 (Sorensen, 1999).

Nodes that received � 0.95 PP or � 70% BV were
considered to be well supported. The Incongruence
Length Difference (ILD) (Farris et al., 1995; Sanderson

& Shaffer, 2002), implemented in PAUP*, was used to
assess data compatibility for each pair of partitions
(heuristic search, 100 replicates, ten random taxon addi-
tions per replicate, TBR branch swapping, retaining 500

trees per replicate).

Results

Data characteristics

The combined dataset consisted of 2814 aligned nucleo-

tides for the four gene fragments: 574 bp of 16S, 580 bp of
opsin, 843 bp of ArgK and 817 bp of EF-1a. The total
numbers of parsimony informative sites for each partition

and gene are listed in Table 2. The overall base composi-
tion was AT biased (60.9%; Table 2) and the within-gene
AT bias (51.3% for ArgK, 57.1% for opsin, 60.0% for

EF-1a, 75.9% for 16S) was comparable with that reported
for other Hymenoptera (Whitfield &Cameron, 1998; Ascher
et al., 2001; Cameron & Williams, 2003; Hines et al., 2006).

Nuclear introns showed higher AT bias (69.6–74.7%) than
exons, which had no or only slight bias (49.3–59.3%).
Mean uncorrected pairwise distances for the ingroup alone
and for the ingroupplus outgroupare given for eachpartition

in Table 2. There are large differences in sequence divergence
between exon and intron regions of each nuclear gene
(Table 2: 3.7% vs. 10.1%, respectively, for opsin; 4.8% vs.

21.9% for ArgK; 4.3% vs. 9.4% for EF-1a). Introns varied
in length between the ingroup taxa and together contained
27% of the informative sites for nuclear genes.

The ILD tests indicated no significant (P > 0.1) incon-
gruence between the partitions (data not shown), except for
three values at P ¼ 0.01 (opsin exon/ArgK intron; opsin
exon/EF-1a exon; ArgK intron/EF-1a exon). Because

incongruence was not strongly supported and problems

Table 2. Descriptive results for each gene and gene partition with relevant model selected for each partition.Mean uncorrected distance within

the largest genus, Tetragonula, was 3.41% (0.16–5.96%).

Gene

partition

Number

of sites

Parsimony

informative

sites

Mean (range)

uncorrected

distance

(ingroup, IG) (%)

Mean (range)

uncorrected

distance

(all taxa) (%)

A/T

(IG) (%) Model (IG)

Gamma

shape

parameter

(IG)

Nst

(IG)

Base composition

homogeneity test

(w2; d.f. ¼ 252/

P value)

All genes 2814 895 6.2 (0–11.1) 7.7 (0–22.7) 60.8 TVM þ I þ G 0.4985 6 225.48/0.884

16S 574 208 10.1 (0–15.9) 11.3 (0–26.6) 75.9 K81 þ I þ G 0.3978 6 231.63/0.817

Opsin 580 201 4.7 (0–11.0) 6.4 (0–22.7) 57.1 – – – 40.43/1.000

Op exon 459 140 3.7 (0–9.2) 5.3 (0–20.7) 54.8 GTR þ I þ G 0.8897 6 24.83/1.000

Op intron 121 61 10.1 (0–26.5) 13.0 (0–50.8) 69.6 HKY þ G 2.5600 2 69.06/1.000

ArgK 843 259 6.2 (0–13.2) 8.0 (0–29.1) 51.3 – – – 204.12/0.988

Arg exon 551 167 4.8 (0–9.3) 6.3 (0–19.4) 49.3 TVM þ I þ G 0.5351 6 69.19/1.000

Arg intron 292 92 21.9 (0–63.2) 27.6 (0–76.6) 69.9 HKY þ G 4.7863 2 187.07/0.999

EF-1a 817 227 4.5 (0–8.1) 5.8 (0–17.3) 60.0 – – – 25.14/1.000

EF exon 738 195 4.3 (0–7.7) 5.4 (0–16.2) 59.3 TrN þ I þ G 1.0086 6 20.29/1.000

EF intron 79 32 9.4 (0–28.0) 14.1 (0–62.9) 74.7 TrN þ I equal 6 88.04/1.000

16S, mitochondrial 16S rRNA; opsin, nuclear long-wavelength rhodopsin copy 1; EF-1a, elongation factor-1a; ArgK, arginine kinase;Nst, number of substitution
types.

Fig. 1. Meliponini phylogeny estimated from Bayesian analysis of four gene fragments [mitochondrial 16S rRNA, nuclear long-wavelength

rhodopsin copy 1 (opsin), elongation factor-1a copy F2 (EF-1a) and arginine kinase (ArgK)]. Black brackets indicate the three major (M)

clades recovered (M-I, M-II, M-III). Internal clades are further represented by corresponding vertical numbered and/or coloured lines and

branches. These lineages represent groupings of the Indo-Malayan/Australasian Regions (M-I, group 1–3), Afrotropical Region (M-II, group

4), Afrotropical/Indo-Malayan/Australasian Regions of ‘minute’ Meliponini (M-II, group 5) and Neotropical Region (M-III). Regions are

further indicated as Afrotropical (AT), Australasian (AA), Indo-Malayan (IM) and Neotropical (NE). The shaded areas represent taxa

comprising the conventional view of ‘Trigona’ s.l. Values above the branches are BMCMC posterior probabilities (PP)/maximum likelihood

bootstrap values (ML BV). PP values without accompanyingML BV values reflect low support (ML BV< 50%) or ML polytomies, except for

Tetragonula minor (ML BV ¼ 64%) and T. sp.n. B, whose positions were reversed in the ML analysis.
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associated with the test were reported by Dowton & Austin

(2002), all four datasets were combined in analyses.

Relationships

Analyses of individual gene fragments resulted in rela-
tively well-resolved phylogenies (not shown). Three of the
four genes divided the taxa into the same three major clades,

distinguishing the Indo-Malayan/Australasian, Afrotropi-
cal and Neotropical taxa discussed further below: opsin (PP
1.00/0.55/0.98), EF-1a (PP 0.91/0.85/–) and 16S (PP 0.85/

0.54/1.00). The missing EF-1a value is due to a polytomy.
ArgK recovered supra-specific groups, but provided no sup-
port for the three major clades. Both 16S and ArgK provided

good resolution within genera, near the tips of the tree.
The BMCMC analysis of the combined gene sequences

(Fig. 1; summary tree in Fig. 2) provides strong support for
the same three principal clades found within the individual

gene analyses: an Indo-Malayan/Australasian major clade
[major clade I (hereafter M-I); PP ¼ 1.00, ML BV ¼ 97%],
an Afrotropical major clade (M-II; PP ¼ 0.90, ML BV ¼
93%) and a Neotropical major clade (M-III; PP¼ 1.00, ML
BV ¼ 92%). The only taxa that contradict these biogeo-
graphically defined clades are Lisotrigona (Indo-Malayan)

and Austroplebeia (Australasia), both of which fall within
the Afrotropical clade.

MP provides strong support for an M-I clade (Fig. 3; MP

BV ¼ 100%), no support for M-II (MP BV < 50%) and
weak support for M-III (MP BV ¼ 65%). Of the forty-two
nodes that correspond between the ML and MP trees, the

ML BVs were on average 7% higher than the MP BVs.
Highly supported nodes (BV ¼ 95%) were consistently
well supported by both optimality criteria. Only two well-
supported nodes under ML (92%/86%) received poor

support under MP (65%/62%).
Although the entire M-I clade comprises all of the Indo-

Malayan/Australasian Trigona, the Neotropical Trigona

occur as a derived group within the M-III clade (PP ¼
0.98,MLBV¼ 71%). Thus,Trigona s.l. is not monophyletic.
The M-I clade comprises three well-supported groups:

Tetragonula–Tetragonilla, Heterotrigona–Geniotrigona and
Tetrigona–Lophotrigona (Figs 1 and 2, groups 1–3; PP ¼
1.00, ML BV ¼ 97–100%). The same three groups are
supported under MP (Fig. 3). Within group 2, Geniotrigona

is not monophyletic because G. thoracica is sister to the
remaining taxa (PP ¼ 1.00, ML BV ¼ 97%), whereas
G. incisa is sister to a derived Lepidotrigona clade (PP ¼
1.00, ML BV ¼ 91%).
The well-supported Afrotropical clade comprises two

lineages: Axestotrigona–Plebeina (group 4; PP ¼ 1.00, ML

BV ¼ 100%) and Hypotrigona–Lisotrigona (group 5; PP ¼
0.96, ML BV ¼ 79%), the latter including Indo-Malayan/

Fig. 2. Summary tree of Fig. 1, indicating the meliponine relationships estimated from Bayesian analysis. Values above the branches are

posterior probabilities. Brackets and colour coding are as described in Fig. 1.
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Fig. 3. Meliponini phylogeny (strict consensus of 12 trees) estimated from maximum parsimony (MP) analysis of four gene fragments [Tree

length, TL ¼ 4.293, consistency index (CI) ¼ 0.36, retention index (RI) ¼ 0.71]. Values above the branches are MP bootstrap values � 50/

Bremer support indices. Brackets and colour coding are as described in Fig. 1.
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Australasian Lisotrigona and Austroplebeia. MP consistently
recovered group 4 with high support (MP BV ¼ 96%), but

group 5 was poorly supported (MP BV < 50%), withHypo-
trigona falling outside as a distinct lineage (MP BV < 50%).
In addition to the polyphyletic division of Trigona s.l.

within the Neotropical clade, the genus Melipona s.l. was
recovered in a relatively basal position as sister to the
majority of New World taxa (PP ¼ 1.00, ML BV ¼ 98%).

Interspecific nucleotide differences

Of the nine polymorphic species included in the analyses,
all were recovered as sister taxa, except for T. fuscobalteata

(Fig. 1), in which two specimens from Borneo (only 4 bp
difference across all genes) were 7.4% different (16S) from
a specimen from Sulawesi (68 bp and 70 bp difference for all

genes, respectively, for the vouchers 514 and 529). Smaller
differences were found in the other taxa: T. sapiens 2.2%
different for 16S (30 bp/all genes), Heterotrigona itama and
H. bakeri 3.8% for 16S (30 bp/all genes) and Lepidotrigona

terminata 4.4% for 16S (43 bp/all genes). T. clypearis,
T. geissleri, G. thoracica, Axestotrigona ferruginea and
Austroplebeia symei were 0–16 bp different across all genes

(< 2.7% for 16S).

Discussion

Non-monophyly of Trigona

With comprehensive taxon sampling of nearly all the Old
World meliponine genera (sensu Moure, 1971) and exem-
plars of a broad diversity of Neotropical taxa, we have

shown that the conventional Trigona s.l. is not monophy-
letic. Rather, it divides into a Neotropical clade and
a distantly related Indo-Malayan/Australasian clade. Jurine

(1807) erected the genus Trigona for three nominal Neo-
tropical species (amalthea, favosa, ruficrus) without an
indication of which one was the name-bearing type. Sub-

sequently Latreille (1810) designated Trigona amalthea as
the type species for the genus. To recognize monophyletic
groups and to uphold the nomenclatural principle of
priority, we recommend that the generic name Trigona be

applied only to the Neotropical taxa and that the use of the
name Trigona for the Indo-Malayan/Australasian taxa be
discontinued. With regard to the question of whether to

recognize higher groupings as genera (sensuMoure, 1971) or
as subgenera (sensu Michener, 2000), this is an arbitrary
decision about rank. The critical issue is that recognized

groups are monophyletic. This phylogeny helps to reinforce
these groups. A detailed consideration of overall meliponine
classification will be published elsewhere.

Relationships between Indo-Malayan/Australasian genera

The single clade of Indo-Malayan/Australasian Trigona-
like taxa (M-I) is also supported by a morphological

synapomorphy of the hind leg (Camargo & Pedro, 1992a, b),
namely the polished surface of the posterobasal part of

the hind basitarsus is delimited anteriorly by a low ridge
bearing a row of setae. All of the M-I taxa were included by
Michener (1990, 2000) in the four Trigona subgenera

Heterotrigona (thirty-six species), Lepidotrigona (four spe-
cies), Homotrigona (monotypic) and Papuatrigona (mono-
typic). He recognized their close affinity as a group, but
presented no hypothesis of their relationships. His subgenus

Heterotrigona was treated as a diverse group comprising all
M-I taxa, except Lepidotrigona, Homotrigona and Papua-
trigona. This classification scheme is contradicted by our

findings that Heterotrigona (sensu Michener, 2000) is poly-
phyletic.
Geniotrigona is polyphyletic due to placement of G. incisa

within the Lepidotrigona clade: correction of the polyphy-
letic Geniotrigona could be made by expanding the concept
of Lepidotrigona to include G. incisa. However, others
have argued that Lepidotrigona is morphologically and

behaviourally distinct based on the unique plumose or
scalelike hairs along the margin of the mesoscutum
(Schwarz, 1939) and its oviposition rituals (cf. Yamane

et al., 1995). Therefore, it is appealing to retain Lepidotri-
gona as a well-defined group by proposing a new supra-
specific name for G. incisa.

Tetragonula is the single largest and most widespread
genus in the Indo-Malayan/Australasian Regions, reported
from India to the Solomon and Caroline Islands. Sakagami

(1978) revised only species from continental Asia and
suggested several species groups (Sakagami et al., 1990).
Evidently, the genus needs taxonomic revision given that six
of our twenty-two sampled species are either newly discov-

ered and undescribed or genetically distinct (T. fuscobalteata).
We propose the construction of six species groups based on
the high support values of taxa sampled: geissleri–sapiens;

laeviceps–cf. pagdeni; carbonaria–mellipes; clypearis–pagdeni;
cf. laeviceps–sp.n. B; sp.n. C.

Relationships between the Afrotropical genera

The Afrotropical meliponine fauna is less diverse than the
Neotropical or Indo-Malayan/Australasian faunas, based
on its relatively fewer species (nineteen species; Eardley,
2004) and genera (ten genera; Moure, 1961), and its low

abundance in most parts of Africa (although see Darchen,
1972; Kajobe & Roubik, 2006). The taxa (excluding
Hypotrigona) are united morphologically by the worker

gonostyli, which are enlarged, apically diverged and cov-
ered with micropilosity (Camargo & Pedro, 1992a, b).
Bayesian MCMC and ML give reasonably good support

for a placement of Hypotrigona within the Afrotropical
clade.
A reduced rastellum and the presence of a well-developed

posterior parapenicillum on the worker hind tibia have been

considered morphological synapomorphies linking Axesto-
trigona, Apotrigona, Meliplebeia, Meliponula and Plebeiella
(Wille, 1979; Michener, 1990; Camargo & Pedro, 1992b).
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Our results support this grouping plus Dactylurina and
Plebeina. Plebeina possesses a well-developed rastellum

but an undeveloped posterior parapenicillum, like that
found in Neotropical Plebeia s.s. In Dactylurina, the ras-
tellum is weakly developed (Camargo & Pedro, 1992b).

Dactylurina has been proposed (Engel, 2000) as the closest
relative to the Late Cretaceous age Cretotrigona, but the
phylogenetic position of the fossil remains tentative.

Placement of the ‘minute’ Meliponini

Genera of minute or small extant taxa [Austroplebeia,
Cleptotrigona (not included here), Hypotrigona, Liotrigona,
Lisotrigona, Pariotrigona (not included here), Trigonisca s.l.]

are found throughout the natural range of the stingless bees,
perhaps as an adaptation to the occupancy of small nest
cavities (Michener, 1961, 2001). Their small size has led to
convergent reduction of at least wing venation (Moure,

1961; Michener, 1990, 2001), making phylogenetic place-
ment based on morphology difficult as a result of a lack of
good synapomorphies (Michener, 1990, 2001). Austrople-

beia, for example, has been ascribed to Afrotropical
(Michener, 1990) and Neotropical (Camargo & Pedro, 1992a)
taxa. Our results show that the minute Trigonisca s.l.

belongs to the Neotropical clade (M-III), and that Liotri-
gona, Hypotrigona, Lisotrigona and Austroplebeia comprise
a monophyletic lineage (group 5) of minute bees within the

Afrotropical clade. The minute Cleptotrigona and Pariotri-
gona remain to be sampled, but otherwise there appears to
have been a convergent reduction in size and wing venation
between Neotropical Trigonisca s.l. and the Hypotrigona–

Lisotrigona group.

Other generic placements

The Neotropical clade (M-III) provides insights into the

relationships of some of its groups (thirteen of thirty-five
supra-specific groups sampled here), and additional taxa are
being sequenced to elucidate the relationships of this
taxonomically and biologically diverse clade. Of particular

interest with respect to these results is the placement of
Melipona, which, by contrast with Michener (1990), is not
sister to the remaining meliponines, but instead falls within

the Neotropical clade with strong support.

Polymorphic species

Nucleotide differences between multiple representatives

of a species generally did not indicate the presence of
polytypic taxa. However, a single T. fuscobalteata from
Sulawesi (194) was not conspecific with morphologically
similar taxa from west of the Wallace line (68–70 bp

difference across genes). Similarly, Lepidotrigona terminata
(east and west of the Wallace line) and T. sapiens (Australia
and New Guinea) showed high sequence divergence (30–43

bp). Additional biological and morphological examination
will probably support these island sister species splits.

Heterotrigona itama has been considered a single species
from Thailand, Malaysia, Borneo, Sumatra and Java,
with variable wing coloration ranging from dark fuscous

to transparent (Schwarz, 1939). Our results suggest that at
least two cryptic species may be present. These molecular
data are consistent with field observations from Borneo
(Sabah, Malaysia), which reveal distinct nest entrances

between the two forms (C. Rasmussen, unpublished).
Examination of the primary types of H. itama and its
junior synonym, H. bakeri, in the National Museum of

Natural History (Washington DC) indicates that the two
forms sequenced correspond toH. itama andH. bakeri (C.
Rasmussen, pers. obs.). H. bakeri (Cockerell, 1919) stat.n.

is therefore distinct and corresponds to the fuscous
morph.

Biogeographical considerations

Several Neotropical taxa (Trigona s.l., Plebeia s.l. and

Trigonisca s.l.) were considered to be close relatives of Old
World taxa on the basis of morphology (e.g. Moure, 1950;
Wille & Michener, 1973; Wille, 1979; Michener, 1990).

These relationships have inspired, but also complicated,
biogeographical hypotheses that can now be revisited with
a strongly supported phylogeny. Kerr & Maule (1964)

suggested that Meliponini originated and diversified in
South America and then dispersed via the Nearctic and
Palaearctic Regions during the Eocene to their current
distribution. Wille (1979) proposed an out-of-Africa

hypothesis in which Meliponini originated in Africa during
the Late Cretaceous or early Tertiary and then dispersed via
Europe during the Eocene and later to their current range.

Considering Plebeia s.l. (Table 1: Meliplebeia, Plebeiella,
Plebeina, Austroplebeia and Neotropical Plebeia s.l.) to be
a single clade with taxa present in all geographical regions,

but the Indo-Malayan Region, Camargo & Wittmann
(1989) argued for a Gondwanan origin of the Plebeia
lineage. Their explanation for the absence of Plebeia

relatives in the Indo-Malayan Region was the existence of
a land connection from the Patagonian shields to Antarc-
tica, which could have allowed them to reach Australia via
this land connection, without dispersal through the Indo-

Malayan Region.
However, our results indicate that the Plebeia lineage is

actually two distantly related clades, one Neotropical and

the other Afrotropical/Indo-Malayan/Australasian, which
refutes the Gondwanan origin of at least Plebeia s.l. All of
group 5 (Fig. 2), with Australasian Austroplebeia and Indo-

Malayan Lisotrigona included within an otherwise Afro-
tropical lineage, appears to have originated via dispersal
from Africa. A similar dispersal scenario from Africa to
Australasia has been suggested for Braunsapis (Apidae:

Xylocopinae) (Fuller et al., 2005), which originated in
tropical Africa during the early Miocene, dispersed into
Asia about 17 million years ago and arrived in Australia

Phylogeny of Old World Meliponini 35

# 2006 The Authors
Journal compilation # 2006 The Royal Entomological Society, Systematic Entomology, 32, 26–39



during the late Miocene (Fuller et al., 2005). Neither the
hypothesized South American origin of Meliponini (Kerr &

Maule, 1964), nor the out-of-Africa hypothesis (Wille,
1979), can be tested here because of limited support for
the basal relationships between the three major clades.

Seven species of Tetragonula found in Australia (Dollin
et al., 1997; Franck et al., 2004) belong to three confirmed
species groups (here named geissleri–sapiens, carbonaria–
mellipes and clypearis–pagdeni), probably representing

three distinct dispersal events into Australia from the
Indo-Malayan Region (Franck et al., 2004). Although the
carbonaria–mellipes species group is the predominant

Tetragonula group in Australia, the other two groups are
found widely outside Australia, and their establishment could
have occurred more recently when periodic Pleistocene land

bridges connected Australia via the Cape York Peninsula and
NewGuinea, the last of which was broken about 10 000 years
ago (Dollin et al., 1997; Voris, 2000; Franck et al., 2004).

Implications for the classification of Meliponini

and future directions

Our results strongly support the division of stingless bees

into three major clades that correspond to the Indo-
Malayan/Australasian, Afrotropical and Neotropical
Regions. Biological studies of ecology, behaviour, nest ar-

chitecture, etc. of the Old World taxa are greatly needed for
comparison with these molecular results. With additional
genes and a more complete taxon sampling from the
Neotropical clade, we should be able to resolve the relation-

ships between these three major clades. At that stage,
a reclassification of the Meliponini would seem appropriate.

Supplementary material

The followingmaterial is available fromhttp://www.blackwell-

synergy.com. Table S1. Meliponine taxa included in this
study, with voucher codes, collecting localities and Gen-
Bank accession numbers.
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(Hymenoptera-Apidae). Ciência Biologica, 1, 25–42.

Cunha, RAd. (1991) Revisão da taxonomia de alguns Meliponinae

por métodos fenéticos (Hym., Apidae). Naturalia, 16, 33–53.
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