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ABSTRACT The absolute configurations of citronellol, 2,3-dihydrofarnesol, and 2,3-
dihydrofarnesal in male marking pheromones of seven species of bumblebees and
cuckoo bumblebees were determined by enantioselective gas chromatography on a
capillary column coated with 60% heptakis(2,3-di-O-acetyl-6-O-TBDMS)-b-cyclodextrin in
polysiloxane PS 268. Pure (–)-S-enantiomers of all three terpenes were found in the
labial glands of all investigated specimens of the following species: Bombus (Bombus)
terrestris, B. (Bombus) lucorum, B. (Pyrobombus) pratorum, B. (Pyrobombus) pyrenaeus,
B. (Pyrobombus) jonellus, B. (Pyrobombus) impatiens, and the cuckoo bumblebee B.
(Ashtonipsithyrus) bohemicus. Within species, specimens were collected at different
localities and in different years. Except for 2,3-dihydrofarnesol in B. terrestris, this is the
first report on the absolute configuration of terpenes in marking pheromones of
bumblebees. Chirality 16:228–233, 2004. A 2004 Wiley-Liss, Inc.
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Many insect semiochemicals are chiral compounds and
the biological activity of both enantiomers often differ.1

Usually, only one of the enantiomers is bioactive; inter-
actions between receptor proteins in insect antenna with
one of the enantiomers of a pheromone constituent were
shown in some Coleoptera,2 Lepidoptera,3 and Hymenop-
tera.4 However, the latest studies on chiral GC-single cell
recordings show that these receptors respond strongly to
one enantiomer but also more weakly to the other
enantiomer (e.g., germacrene D in several heliothinae
moths5 or limonene in the pine weevil Hylobius abietis6).
Sometimes, both enantiomers are biologically active and
they may even show a different type of activity.1 Thus, the
‘‘unnatural enantiomer’’ (i.e., not produced in the insect)
can be equally active, less active (but enhancing the ac-
tivity of the ‘‘natural enantiomer’’), or it inhibits the activity
of the natural pheromone.1 Some insect species use pure
enantiomers as pheromones, while others produce a
racemic mixture or a mixture of enantiomers in a species-
specific proportion.1 In this way, the organisms possess
an enormous diversity in communication systems.

Chiral acyclic terpene alcohols play an important role in
the chemical communication of bumblebees.7 They are
components of the male marking pheromone in several

species of bumblebees and cuckoo bumblebees.8,9 The
marking pheromone is secreted by the cephalic part of
the labial gland. During the summer season, the bum-
blebee males scent-mark spots on the vegetation they
survey by perching near the spot10 or by patrolling from
spot to spot.11,12 Marking pheromone functions primarily as
an attractant and arrestant for virgin females7 and, more-
over, as a short-term aphrodisiac for males themselves.13

Citronellol (1), 2,3-dihydrofarnesol (2), geranylcitronel-
lol (4), and the corresponding aldehydes are often found
in the male labial gland secretions of bumblebees and
cuckoo bumblebees. Since the secretions are species-
specific and the specificity is mostly reached by different
proportions of components, knowledge of the enantio-
meric purity of the chiral pheromone components is
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needed for full characterization of individual compounds
and for further studies of their ecological importance.

The absolute configuration of 2,3-dihydrofarnesol (2, ter-
restrol) in the male marking pheromone of Bombus ter-

restris was determined earlier by a chemical derivatization
method. Ställberg-Stenhagen14 oxidized terrestrol to the
corresponding aldehyde and prepared an acetal with (R)-
propane-1,2-diol. The same derivatives were prepared from
synthetic enantiomers of 2,3-dihydrofarnesol and the
diastereoisomers formed were resolved by chromatogra-
phy. Thus, the (S)-(–)-configuration was proven for ter-
restrol, (S)-2. This method could be applied to B. terrestris
samples, where 2,3-dihydrofarnesol is the main component
and can be obtained in tens of micrograms. The absolute
configuration of other chiral compounds in the bumble-
bee pheromones of other species has not been reported
previously. Novel techniques are needed to determine the
configuration of the minute amounts of chiral compounds
present in the glands of the other bumblebee species.

In this article we report the enantiomeric purity of
citronellol (1), 2,3-dihydrofarnesol (2), and 2,3-dihydrofar-
nesal (3) forming major or minor components of the male
marking pheromones of six bumblebee and one cuckoo
bumblebee species using a two-dimensional gas chroma-
tography (2D-GC) technique.15

EXPERIMENTAL
Insects

Male bumblebees of the following species were col-
lected and used for analyses: Bombus (Bombus) terrestris
L., B. (Bombus) lucorum (L.), B. (Pyrobombus) pratorum
(L.), B. (Pyrobombus) pyrenaeus Pérez, B. (Pyrobombus)
jonellus (Kirby), B. (Pyrobombus) impatiens Cresson, and
the cuckoo bumblebee B. (Ashtonipsithyrus) bohemicus
Seidl. Data on collection of specimens are summarized in
Table 1. Bombus terrestris and some B. lucorum specimens
were obtained from laboratory colonies established using
mated queens from the previous year collected in South
Moravia, Czech Republic.

Preparation of the Labial Gland Extracts

Labial glands (LG) were dissected from the bumblebee
heads. Compounds were extracted from tissues with hex-

TABLE 1. Origin of bumblebees; contents and enantiomeric purities of chiral terpenes in their marking pheromones

Species Origin of specimensa

Relative abundance according to GC integration
(nonchiral; chiralb)

Citronellol 2,3-Dihydrofarnesol 2,3-Dihydrofarnesal

B. terrestris Brno (Czech Rep.), 1999 (lab. colony, 4 specimens) — 28–32%; >97.9% (S) 1�3%; >99.3% (S)
B. pratorum Hornı́ Albeřice (East Bohemia, Czech Rep.), 1995 0.2%; >98.1% (S) 0.02%; not determined —

Hornı́ Albeřice (East Bohemia, Czech Rep.), 1997 0.3%; >98.1% (S) 0.2%; not determined —
B. lucorum Brno (South Moravia, Czech Rep.) 1999 (lab. colony) — 0.2%; >97.9% (S) —

Pavlov (South Moravia, Czech Rep.), 1998 — 0.05%; >97.9% (S) —
B. jonellus Zonhoven (Belgium) 2001 — 84%; >97.9% (S) 13%; >99.3%(S)

Brdy-Jordán (Central Bohemia, Czech Rep.), 1995 — 16%; >97.9% (S) 41%; >99.3% (S)
B. bohemicus East Pyrenees (France), 2001 0.2%; >98.1% (S) — —
B. impatiens Montreal (Quebec, Canada), 2002 — 61%; >97.9% (S) 0.02%; >99.3% (S)
B. pyrenaeus East Pyrenees (France), 2001 — 0.3%; >97.9% (S) —

aOne sample per species and locality was analyzed if not stated otherwise.
bMaximum contamination by the (R)-enantiomer was calculated from chromatographic parameters (difference in retention times, peak height, and peak
tailing).
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ane (50 ml per gland, Merck, Darmstadt, Germany, grade
p.a. for residue analysis) or dichloromethane (200 ml per
gland, Aldrich, Milwaukee, WI, capillary GC grade). After
2 h shaking at room temperature the extracts were filtered
and stored at �18jC before analyses.

Chemicals

Enantiomers of citronellol (1, purity 98% for (R)- and
99% for (S)-enantiomers) were purchased from Aldrich.
The racemate was made by mixing equimolar amounts of
both enantiomers. E,E-Farnesal (6) was obtained by oxi-
dation of E,E-farnesol (5, 96% purity, Sigma, St. Louis,
MO) with MnO2 in dichloromethane. Racemic 2,3-dihy-
drofarnesal (3) was prepared from E,E-farnesal (6) using
palladium-catalyzed conjugate reduction with diphenyl
silane and zinc chloride cocatalyst.16 Racemic 2,3-dihydro-
farnesol (2) was obtained by reduction of racemic 2,3-
dihydrofarnesal (3) with LiAlH4.

(S)-2,3-Dihydrofarnesol [(S)-2] was prepared from pren-
yl iodide (Aldrich) via a three-step synthetic procedure
developed previously in our laboratory.17 The syn-
thesis represents an efficient [3 + 1 + 6] extension pro-
cedure on prenyl iodide, starting from methyl hydrogen
(S)-(+)-3-methylglutarate (Aldrich). This compound was
selectively reduced to hydroxy ester from which methyl
(3S)-5-iodo-3-methylpentanoate was prepared. Prenyl
iodide was extended by reaction with allene dianion and
further with trimethylallane. The resulting (1E)-1-iodo-2,6-
dimethylhepta-1,5-diene reacted then in a palladium-
catalyzed cross-coupling with zinciodide prepared from
methyl (3S)-5-iodo-3-methylpentanoate (see above) to
afford (S)-2,3-dihydrofarnesol [(S)-2].17

(S)-2,3-Dihydrofarnesal [(S)-3] was obtained by oxida-
tion of (S)-2,3-dihydrofarnesol [(S)-2] with pyridinium
chlorochromate (Aldrich).18

Analyses

The constituents of the bumblebee LG were identified
by GC with mass spectrometric detection. A Varian
3400 GC with Finnigan SSQ7000 MS was equipped with a

DB-WAX column (polyethylene glycol; 30 m � 0.25 mm,
film thickness 0.25 mm, J&W Scientific, Folsom, CA). The
temperature program started at 50jC (2 min), then 4jC/
min to 120jC (0.1 min), then 5jC/min to 220jC (20 min).
Split injector temperature was 230jC. Some samples were
analyzed in parallel on a GC CE 8000 with a splitless in-
jector (220jC) and a mass detector (Fisons MD 800) in
electron impact ionization mode. A DB-5 column (5% phenyl
methyl silicone; 30 m � 0.25 mm, film thickness 0.25 mm,
J&W Scientific) was programmed from 70jC (3 min), then
40jC/min to 140jC, then 2jC/min to 240jC, and 5jC/min
to 300jC. The identification of compounds was based
principally on their mass spectra compared with those in
the National Institute of Standards and Technology Library
(NIST, USA) and on co-chromatography with synthetic
(2,3-dihydrofarnesol, 2,3-dihydrofarnesal) or commercially
available (citronellol) standards.

Citronellol (1), mass spectrum, m/z (%): M+ 156 (4), 138
(8), 123 (16), 95 (32), 81 (43), 69 (82), 55 (54), 41 (100).
2,3-Dihydrofarnesol (2), mass spectrum, m/z (%): M+. 224
(1), 209 (1), 181 (21), 163 (14), 123 (54), 109 (19), 99 (20),
95 (50), 81 (80), 69 (100), 67 (33), 55 (26), 41 (63). 2,3-
Dihydrofarnesal (3), mass spectrum, m/z (%): M+. 222 (1),
204 (1), 179 (12), 161 (7), 123 (14), 109 (18), 93 (12), 81
(13), 69 (100), 55 (14), 41 (56).

Prefractionation of Extracts

Preparative TLC was done on plates DC-Fertigplatten
(2.5 cm � 7.5 cm) with Kiesegel 60 (Merck). Terpene
standards were co-chromatographed with the samples. A
mixture of hexane:diethyl ether (7:3) was used as a mo-
bile phase, detection was done by spraying with Rhod-
amine 6G (Sigma, 0.05% solution in ethanol) and UV light.
The terpene zones were eluted from silica gel with diethyl
ether (3 ml). The eluate was concentrated to a volume of
50 ml and injected into the 2D-GC.

Enantioselective Separations

A 2D-GC technique was used for separations of the
linear terpene enantiomers. Two Varian 3400 gas chromato-
graphs were connected with a heated interface and two

Fig. 1. Parts of chromatograms of citronellol enantiomers on the chiral
column. A: Citronellol from B. pratorum. B: Coinjection of B. pratorum
sample with racemic citronellol. C: Racemic citronellol.

Fig. 2. Parts of chromatograms of 2,3-dihydrofarnesal and 2,3-dihy-
drofarnesol enantiomers on the chiral column. A: 2,3-Dihydrofarnesal and
2,3-dihydrofarnesol from B. jonellus. B: Coinjection of B. jonellus sample
with racemic 2,3-dihydrofarnesal and 2,3-dihydrofarnesol.
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Valco microvalves (1/32’’) were installed each in one GC
oven as described in the literature.15 Deactivated fused
silica capillaries were used as retention gaps and for
connections of the valves with each other and with the
detectors. The valve in the first GC was time-programmed
to switch between the FID and the interface. Thus, only
compounds 1, 2, or 3 were selected from the labial gland
extracts to be separated on the chiral column installed in the
second GC.15

In the first GC, a DB-WAX column (see above) was ap-
plied for nonchiral separations of terpene constituents
in the extract samples. The temperature program started
at 40jC (1 min), rose at 4jC/min to 120jC, then 5jC/min
to 225jC (20 min). For separation of 2,3-dihydrofarnesol,
the method started at 50jC and continued in the same
way. The FID detector temperature was 250jC.

The stationary phase in the chiral column was 60%
heptakis(2,3-di-O-acetyl-6-O-TBDMS)-b-cyclodextrin in
polysiloxane PS 268 (Ref.19). A good separation of enan-
tiomers of citronellol (1) was obtained isothermally at
115jC. 2,3-Dihydrofarnesol (2) and 2,3-dihydrofarnesal
(3) enantiomers were isothermally separated at 100jC. A
higher flow of carrier gas (linear velocity 32 cm/s) was
used to shorten the retention times of the two sesquiter-
penes. The elution order was determined from chromato-
grams of synthetic standards of pure (S)-enantiomers and
the racemates. The absolute configuration in biological
samples was assigned not only from retention times but
also from coinjection with racemic standards and enhance-
ment of the peaks of (S)-enantiomers (Figs. 1, 2).

RESULTS AND DISCUSSION

Enantiomeric pairs of citronellol (1), 2,3-dihydrofarne-
sol (2), and 2,3-dihydrofarnesal (3) separated well on a
60% heptakis(2,3-di-O-acetyl-6-O-TBDMS)-b-cyclodextrin
in polysiloxane PS 268 column.20 A baseline separation
was obtained at 115jC for citronellol (Fig. 1) and at
100jC for both 2,3-dihydrofarnesol and 2,3-dihydrofarnesal
(Fig. 2, Table 2). Analyses times were quite long for both
sesquiterpenes; however, with higher temperatures the
baseline separation of enantiomers was not obtained.

Some of the chiral terpenes are major components of
the labial gland secretions (2,3-dihydrofarnesol, 84% in B.
jonellus, 61% in B. impatiens, 30% in B. terrestris), some
species, on the other hand, produce these compounds in
minor amounts (2,3-dihydrofarnesol, 0.02% in B. lucorum,

0.3% in B. pyrenaeus; citronellol, 0.3% in B. pratorum, 0.2%
in B. bohemicus) (Table 1). Considering that one gland
extract contains f50 mg of the secretion (mixture of up to
100 components), it is impossible to use classical methods
(separation and measuring optical rotation) or chemical
derivatization for determination of the enantiomeric pu-
rity, especially for minor compounds. The use of enantio-
selective GC in a 2D system15 simplified the analyses and
enabled the determination of the enantiomeric ratio of
terpenes in amounts as small as 10 ng in complex mixtures
with high accuracy.

All three terpenes, citronellol, 2,3-dihydrofarnesol, and
2,3-dihydrofarnesal, were found to be pure (S)-enan-
tiomers (within detection limits) in all species studied
(Table 1). No traces of (R)-enantiomers were detected in
any of the three terpenes. In B. terrestris, our result was in
agreement with a previous report on the enantiomeric
purity of 2,3-dihydrofarnesol (terrestrol).14 Despite the fact
that the species studied belong to three different sub-
genera, and thus are not closely related, the enzyme
systems producing terpene pheromone components must
be very similar in all bumblebee species.

Citronellol (1) was previously reported in marking phe-
romone of Bombus (Alpinobombus) hyperboreus,21 B.
(Pyrobombus) pratorum,11 and B. (Ashtoniopsithyrus) bo-
hemicus.11,22 (S)-Citronellol is a common constituent of
essential oils, e.g., rose and geranium oils, while (R)-
citronellol is found in high amounts in the family Ru-
taceae.23 A difference in the perception of citronellol
enantiomers was demonstrated in the honeybee, Apis
mellifera.4 This may be connected to the ability of the bee
foragers to find rich food sources. There are numerous
reports on the presence of citronellol in plant material and
its role in communication among insects and between
insects and plants needs to be investigated further.

2,3-Dihydrofarnesol (2) occurs both in animals and in
plants. The compound is found in the floral fragrance of
different plants, i.e., Cyclamen,24 Viola odorata,25 different
orchids,26 or Lonicera japonica.27 The absolute configu-
ration of the compound in fragrance was not reported.
Several species of bumblebees were reported to contain
2,3-dihydrofarnesol in the marking pheromones. Thus,
Bombus (Alpinobombus) hyperboreus,21 B. (Pyrobombus)
huntii,28 B. (Pyrobombus) jonellus, B. (Pyrobombus) cingu-
latus,21 and B. (Bombus) terrestris29 males produce 2,3-
dihydrofarnesol in substantial amounts. In B. (Bombus)

TABLE 2. Chromatographic properties of chiral terpenes on the chiral column (60% heptakis(2,3-di-O-acetyl-6-O-
TBDMS)-b-cyclodextrin in polysiloxane PS-268)

Parameter/Enantiomer

2,3-Dihydrofarnesol,
racemic

2,3-Dihydrofarnesal,
racemic

Citronellol,
racemic

(S )-(�) (R )-(+) (S )-(�) (R )-(+) (S )-(�) (R )-(+)

Temperature (isothermal) [jC] 100 100 115
Retention time [min] 152.2 155.5 126.8 130.7 23.2 23.6
Column efficiency, N/L [m�1] 1.70 � 106 1.58 � 106 1.62 � 103 1.28 � 103 3.24 � 107 2.76 � 107

Resolution, R 1.05 1.65 1.40
Column selectivity, a 1.019 1.033 1.006
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lucorum,30 B. (Metapsithyrus) campestris, and B. (Allopsi-
thyrus) maxillosus31 male labial glands, 2,3-dihydrofarnesol
is a minor or trace component. The role of 2,3-dihydro-
farnesol in Dufour’s gland of B. terrestris workers32 has not
been explained.

It is known that enantiomerically pure (S)-2,3-dihydro-
farnesol is the main component of B. terrestris phero-
mone.14 This is the only report available on the chirality of
the marking pheromone components of bumblebees and
cuckoo bumblebees. (S)-2,3-Dihydrofarnesol elicited re-
sponses on the female antennae of B. terrestris (Kalinová
and Valterová, unpubl. results, and Ref. 7). We now report
on the presence of the same pure enantiomer in four other
bumblebee species.

There are also several reports on the presence of 2,3-
dihydrofarnesol in glandular extracts of different animals.
In insects, dihydrofarnesol is a semiochemical of Lasius
ants33 and traces were detected in Dufour’s gland of army
ants, Dorylus (Anomma) molestus.34 The African elephant
(Loxodonta africana) produces 2,3-dihydrofarnesol and
related sesquiterpenes in its temporal glands that may play
a role in chemical communication.35 Furthermore, a series
of 2,3-dihydrofarnesyl and citronellyl esters were found in
the paracloacal gland secretion of the brown caiman
(Caiman crocodilus fuscus).36 The paracloacal gland secre-
tion is thought to be involved in mate attraction or nest-site
marking.37 The absolute configuration has not been de-
termined either in the elephant or in the caiman samples.

2,3-Dihydrofarnesol is a valuable compound used in
perfumery.38 The (S)-enantiomer was found to have a long-
lasting graceful odor, in contrast to the (R)-enantiomer,
which had a weak fragrance with a metallic side note.
Similarly, animals including bumblebees are also likely to
perceive the enantiomers with different sensitivity.

Compared to 2,3-dihydrofarnesol (2), 2,3-dihydrofarne-
sal (3) is much less common in natural sources. It was
described in the scent of the orchid Aerides jarckianum, in
the blossom fragrance of Citrus limon,20 and the enantio-
meric composition in these two samples was similar, 85:15
in favor of the (S)-enantiomer. Fresh juniper needles con-
tain about 3% of 2,3-dihydrofarnesal.39 Besides bumblebees,
2,3-dihydrofarnesal was reported as a component of a sex
pheromone in Ascogaster quadridentata, a parasitoid of the
codling moth, Cydia pomonella.40 In bumblebees, 2,3-
dihydrofarnesal was previously reported in Bombus (Alpi-
nobombus) hyperboreus,21 B. (Pyrobombus) jonellus, and B.
(Pyrobombus) cingulatus.41 We have now detected (S)-2,3-
dihydrofarnesal in three species: B. terrestris, B. jonellus,
and B. impatiens (Table 1). 2,3-Dihydrofarnesal usually
accompanies 2,3-dihydrofarnesol in smaller amounts. Thus,
their biosynthetic relatedness is obvious.

Biosynthesis of terpene insect pheromones has been
thoroughly investigated in the order Coleoptera. It was
shown in Ips species that acyclic monoterpene alcohols
arise from monoterpene hydrocarbons by oxidation.42

Monoterpenes can be built either by the classical iso-
prenoid pathway starting from mevalonate or by modifica-
tion of the host dietary components. In the case of
terpenes in the marking pheromones of bumblebees, we
assume de novo biosynthesis starting from mevalonate, as

the dietary conditions vary from colony to colony and from
locality to locality and also depend on season. The final
steps of the pathway are probably hydrolysis of diphos-
phate group in geranyldiphosphate or farnesyldiphosphate
to alcohols followed by the enantioselective reduction
of the double bond in position 2(3).43 The formation of
only one enantiomer, i.e., (S)-citronellol, (S)-dihydrofarne-
sol, and (S)-dihydrofarnesal, suggests the presence of only
one highly selective oxidoreductase in the enzymatic
system of bumblebees.

The importance of chirality is now well established in the
chemical communication of organisms. Progress was made
possible by advances in both analytical and synthetic or-
ganic chemistry. The development of chiral stationary
phases for GC44,45 simplifies the determination of the en-
antiomeric compositions of chiral compounds, especially
when applied in a 2D GC-system for separating enantiomers
in complex mixtures.15,46 – 48 The absolute configuration of
trace components of pheromones can now be determined
and this knowledge used for further biological studies.
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